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Abstract The synergy between social network analysis

and wireless ad hoc network protocol design has recently

created increased interest for developing methods and

measures that capture the topological characteristics of a

wireless network. Such techniques are used for the design of

routing and multicasting protocols, for cooperative caching

purposes and so on. These techniques are mandatory to

characterize the network topology using only limited, local

connectivity information—one or two hop information.

Even though it seems that such techniques can straightfor-

wardly be derived from the respective network-wide tech-

niques, their design presents significant challenges since

they must capture rich information using limited knowl-

edge. This article examines the issue of finding the most

central nodes in neighborhoods of a given network with

directed or undirected links taking into account only local-

ized connectivity information. An algorithm that calculates

the ranking, taking into account the N-hop neighborhood of

each node is proposed. The method is compared to popular

existing schemes for ranking, using Spearman’s rank cor-

relation coefficient. An extended, faster algorithm which

reduces the size of the examined network is also described.

Keywords Centrality � Localized algorithms �
Social networks � Ad hoc networks

1 Introduction

During the last decade, the advances in device miniaturi-

zation and in the respective system/application software,

along with the tremendous growth of wireless networks,

have made the presence of ad hoc networks ubiquitous. A

wealth of ad hoc networks is encountered today, such as

mobile ad hoc networks (MANETs), wireless sensor net-

works (WSNs), wireless mesh networks (WMNs) and so

on. They have potential applications in disaster relief,

battlefield environments, wireless Internet connectivity and

intelligent vehicles. An ad hoc network consists of wireless

hosts (nodes) that communicate with each other in the

absence of a fixed infrastructure; each host acts as a relay

that forwards messages toward their destination.

The lack of fixed infrastructure makes the nodes of an ad

hoc network to be strongly interdependent on each other.

This fact helped realize the significance of borrowing con-

cepts from the field of social network analysis (SNA)

(Wasserman and Faust 1994) to the design of more efficient

information transfer protocols. This borrowing was further

enforced by the fact that many of the ad hoc networks were

basically human centered and they follow the way humans

come into contact. Moreover, because of lack of infra-

structure, it is rather challenging to develop more system-

atic design optimization approaches, as for instance in

cellular networks. Greedy, best-effort techniques are used

primarily for opportunistic ad hoc networks and they may

benefit significantly from the social networking perspective.

Informally, a social network is a collection of ‘actors’, a

set of relational information on pairs of actors and possible

attributes of the actors and/or of the links. In our context,

the actors are the ad hoc network nodes and the relationship

among pairs of actors is the existence (or not) of a wireless

link among them. The attributes on the actors and links that
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can model node energy and link quality measures,

respectively, are not investigated in the methods described

in this article.

The notion of a social network and the methods of SNA is

a quite old discipline and they have attracted significant

interest initially from the social and behavioral communi-

ties, later from the data mining (Abdallah 2011; Hwang et al.

2008) and only recently from the networking community

(Katsaros et al. 2010). This interest stems from the focus of

SNA to relationships among entities and on the patterns and

implications of these relationships. In the networking com-

munity, SNA is viewed as another network measurement

task, while the traditional tasks of network measurement

deal with issues such as traffic monitoring, latency, band-

width and congestion. The analysis of the ‘social’ aspects of

a network is the study and exploitation of the structural

information present in the network, such as existence and

strength of communities (Saravanan et al. 2011), node

centralities, network robustness to node removal, topology

evolution over time (Gilbert et al. 2011) and so on.

Among the most significant tasks involved in SNA is the

calculation of centrality measures (Bonacich 1987). Point

centrality in communication is based on the concept of

betweenness, first introduced in Bavelas (1948). According

to betweenness centrality, a node is central to the degree

that it stands between others. PageRank (Brin et al. 1999)

is another very popular method for measuring centricities

in social networks, a spectral centrality measure; the basic

idea behind PageRank is that a node is significant if it is

connected to other significant nodes. Various other mea-

sures of centrality and ranking have been proposed to

determine the importance of a node within a graph (Free-

man 1979) (cf. Sect. 2).

These centrality indices are of great value in the

understanding of the roles played by actors in social net-

works, and by the nodes in various webs (Web, Internet,

Food/Sex web), but they are not appropriate for use in

protocol design in ad hoc networks. Network protocols for

these types of wireless networks are based on localized

algorithms, which means that they are allowed—for per-

formance and scalability purposes—to use only local

information, e.g., two or three hop connectivity informa-

tion. Such ‘localized’ centrality measure presents a

potential for control of communication, safety issues (Le-

skovec et al. 2007), routing protocols (Hui et al. 2007;

Maglaras and Katsaros 2011), information dissemination

(Dimokas et al. 2008, 2011) and so on.

This article studies the problem of identifying the most

central nodes in networks (graphs) by using only localized

information, i.e., of a few hops. It is motivated by the design

of protocols in wireless networks that seek for nodes

‘‘central‘‘ in the network to assign to them special roles, e.g.,

mediator nodes in cooperative caching for sensor networks

(Dimokas et al. 2008, 2011), message ferrying nodes in

Delay Tolerant Networks (Hui et al. 2007), rebroadcasting

nodes in vehicular networks (Zhang and Wolff 2008) and so

on. The relation of social networks and ad hoc networks is a

well-established relation in many works, e.g., Sastry and

Pan Hui 2011 and the references therein. In this context, the

article makes the following contributions:

– argues for the inadequacy of network-wide centrality

measures for use in ad hoc network protocol design and

explains the importance and challenges of designing

localized centrality measures, initiating the relevant

research;

– proposes two measures, namely AWeNoR and AW-

eNoR–Reduced that can be used for ad hoc network

protocol design;

– evaluates the qualitative characteristics of these two

measures comparing them with two popular network-

wide centrality measures, namely shortest-path

betweenness centrality and PageRank centrality, using

three real networks.

The remainder of this paper is structured as follows:

Section 2 briefly describes the related work on centrality

measures. In Sect. 3, the network model, the assumptions

and the AWeNoR ranking technique are described. Sec-

tion 4 shows the results of the comparison of AWeNoR to

other centrality measures. Section 5 introduces another

faster technique for computing final rankings through local

weight, and the article concludes with Sect. 6.

2 Relevant work

There are really no true ‘localized’ centrality measures,

except from the degree centrality (Wasserman and Faust

1994), which is loosely defined as the number of 1-hop

neighbors of a node, and its variations, the lobby index

(Korn et al. 2008) and the power community index

(Dimokas et al. 2011). However, these indices are poor

indicators of the local connectivity. The rest of the cen-

trality measures are computed using knowledge of the

complete (network-wide) connectivity information. Close-

ness centrality (Wasserman and Faust 1994) is defined as

the inverse of the sum of the distances between a given

node and all other nodes in the network. We easily realize

that this index is practically meaningless in a narrow, e.g., a

two-hop neighborhood.

Shortest-path betweenness centrality (Wasserman and

Faust 1994) is defined as the fraction of the shortest paths

between any pair of nodes that pass through a node. A

similar technique that measures the extent of bridging

capability of all nodes or links in the network is the bridging

centrality (Hwang et al. 2008; Nanda and Kotz 2008) .
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These centrality measures are relatively rich indicators of

node ‘positioning’, but when these measures are to be used

in ad hoc wireless networks, they suffer from several

shortcomings. Betweenness centrality suffers from the fact

that it leaves many nodes unranked, when these nodes do

not participate in any shortest paths computed. Moreover,

the existence of bridge links in the network graph results in

increasing at an excessive amount the centrality value of the

articulation node without this node being really ‘‘central’’.

Other similar centrality measures are flow-betweenness

(Freeman et al. 1991) and betweenness centrality based on

random walks (Newman 2005). Flow betweenness of a

node i is defined as the amount of flow through the node

i when the maximum flow is transmitted from node s to

node t, averaged over all s and t. The method requires the

computation of all the maximum flows in the network and

suffers from some of the same drawbacks as shortest-path

betweenness. The random walk betweenness centrality on

the other hand for a node i is the number of times a mes-

sage passes through i on its journey, averaged over a large

number of trials of the random walk and all pairs s, t. This

measure is not localized and demands O((L ? V)V2) in

computational time.

Apart from the aforemetioned graph-theoretic measures,

a very popular family of centralities are the spectral cen-

tralities (Perra and Fortunato 2008). There are various

definitions of such measures, which are referred to as

‘spectral’ because they are based on the spectral properties

of the matrix, representing the relationships among the

nodes. These measures define the prominence of a node

recursively, i.e., a node is prominent if it is pointed to by

other prominent nodes. The most popular of the spectral

centrality measures is the PageRank metric (Brin et al.

1999), which is one of the methods used by Google to rank

Web pages. PageRank suffers from the fact that nodes may

be ranked very high due to the fact that they are adjacent to

significant nodes even though they play no specific role in

packet forwarding (e.g., the sink nodes). Additionally, the

PageRank produces meaningfull rankings when applied

only to relatively large graphs and not in narrow, e.g., two-

hop neighborhoods. Moreover, the computation of Page-

Rank requires cumbersome calculations and knowledge of

the whole network topology, which is not possible in ad

hoc wireless networks that require localized algorithms.

In this paper, a novel measure for calculating the cen-

trality of nodes in networks (static or semistatic) is pro-

posed. The basic idea is that the centrality of a node is to be

calculated over its neighborhood. In this subgraph, all the

paths connecting the considered node with all the nodes of

the neighborhood are found and a local weight is com-

puted. Local weights are accumulated to give an aggre-

gated measure of centrality and subsequently a node

ranking. The new measure called ‘‘Aggregated Weight

N-hop Ranking’’ (AWeNoR) not only rewards nodes that

belong to many neighborhoods, but also rewards those

ranked high in the neighborhoods they belong to. Due to

this attribute, no nodes (except from the isolated ones)

remain unranked. To remedy the computational complexity

of this measure, the article also describes a second mea-

sure, namely AWeNoR–Reduced.

3 The AWeNoR node ranking method

As described earlier, the basic idea behind the proposed

method is to create each node’s neighborhood and compute

the local weights in this subgraph. All these weights are

then accumulated to give the final rank of each node. In

Sect. 3.1 ,we describe the algorithm for this method,

Sect. 3.2 shows how local weights are calculated and

Sect. 3.3 demonstrates how the final rankings are computed

by aggregating the local weights.

3.1 The N-hop neighborhood

We consider a network G = (V, L), where V is the set of

nodes and L is the set of links. Each link can be undirected

or directed having weight equal to 1.1 Each node is given a

distinct ID; IDs start from the value one.

Definition 1 A node j belongs to neighborhood GN,i of

the node i, if there exists at least one path from the starting

node i to the end node j, in at most N-hops away (Fig. 1).

Fig. 1 Graph G and a neighborhood GN,i

1 Other weights can be assigned as well, when we want to model

energy, latency issues, but these issues are not examined here.
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To compute the ranking of each node, the proposed

method operates as follows:

1. Find all the paths from node i to every other node

j which is at most N hops away, thus creating the

neighborhood GN,i.

2. Calculate the local weight of all the nodes in GN,i

(except from i) according to the AWeNoR method

[explained later].

3. Accumulate local weights to obtain the final ranking of

all the nodes.

Since ad hoc networks are relatively sparse, the space

requirements are not really large; with an average node

degree equal to d, each node i needs to construct a dN 9 dN

table (both d and N are not expected to be larger than 10).

3.2 Local weight

The AWeNoR algorithm aims at computing the local

weights of nodes which belong to GN,i neighborhoods.

There are two intuitions behind this algorithm. Firstly, the

nodes closer to the starting node of a path are more crucial

than the more distant ones, with respect to disseminating

information to the rest of the network. Secondly, all paths

can be used to pass data in a neighborhood and not only the

shortest path, as used by the betweenness centrality when it

calculates node rankings. The algorithm for computing

local weight proceeds by deriving all paths with starting

node i. The paths are specified as Pi
k ¼ u0

i ; u
1
i ; . . .; uN

i

� �
;

where Pk
i is the kth path from start node i, and ui

j is a node at

a j-hop distance from the start node i. For each hop j, a

weight is computed for each node l using Eq. 1.

W j
l ¼

aj
l

Kl
; Kl [ 0 ð1Þ

where Kl is the total number of nodes that appear at the j-th

hop and al
js shows the number of times that node l appears

in hop j through all the paths of the neighborhood GN,i. The

local weight for any node in neighborhood GN,i is

computed using Eq. 2.

bi
l ¼

X

8j

W j
l

j
; 8l 2 GN;i ð2Þ

The size of the neighborhood is a parameter that plays a

significant role. Taking N equal to the network diameter,

the neighborhoods coincide with the network graph G. In

that case, to compute the ranking of a node, all paths

between nodes have to be found, thus making the algorithm

inappropriate even for medium-sized networks. On the

other hand, giving to N a very small value, the obtained

rankings may not be very representative at all.

As an example, consider the directed network shown in

Fig. 2 where a neighborhood GN,i of a directed graph is

shown. A directed graph is used to make it more clear for

the reader to understand the steps of the method. Parameter

N, which is the size of the neighborhood, has value 4, while

the the initial node is a node with id 1. Thus, the neigh-

borhood is G4,1. The paths that exist in this neighborhood

are shown in Table 1.

Values of parameter al
j are shown at Table 2 for every

node except node 1, since it is the starting node of all paths

and the value al
j for that node would be equal to one.

After computing parameter al
j for all nodes of the

neighborhood, Eq. 1 is used. Parameter’s Kj value for

every hop is 5, 5, 5, 1, respectively. In the fourth hop, only

one path has a node and thus K4 equals one. It can be

verified that W2
1 = 1/5, W3

1 = 2/5, W4
1 = 2/5, W5

2 = 2/

5, W6
1 = 2/5, W7

2 = 1/5, W6
3 = 1/5, W8

3 = 4/5, W8
4 = 1.

Final local weights of all nodes of G4,1 according to

Eq. 2 are b1
2 ¼ 1

5
; b1

3 ¼ 2
5
; b1

4 ¼ 2
5
; b1

5 ¼ 2
5
� 1

2
; b1

6 ¼ 2
5
� 1

2
þ

1
5
� 1

3
; b1

7 ¼ 1
5
� 1

2
; b1

8 ¼ 4
5
� 1

3
þ 1

1
� 1

4
:

3.3 Final rankings

The algorithm AWeNoR computes local weights for all

nodes that belong to a neighborhood GN,i. Since nodes may

1

2

3

4

5

6

7

8

Fig. 2 Example neighborhood GN,i

Table 1 Neighborhood’s paths

Initial node 1st hop 2nd hop 3rd hop 4th hop

1 2 5 8 –

1 3 6 8 –

1 3 6 8 –

1 4 6 8 –

1 4 7 6 8

Table 2 Parameter al
j

1st hop 2nd hop 3rd hop 4th hop

j j aj
l j j aj

l j j aj
l j j aj

l

2 j 1 5 j 2 6 j 1 8 j 1
3 j 2 6 j 2 8 j 4
4 j 2 7 j 1
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belong to multiple neighborhoods, the local weights have

to be accumulated to obtain the final ranking of the node

using Eq. 3.

bl ¼
X

8GN;i

bi
l; 8l 2 G ð3Þ

It must be stated that only acyclic paths are used from

AWeNoR to compute local weights. Also, in every

neighborhood GN,i, the local weights are calculated for

every node that belongs to GN,i, except from i itself, since

its weight, using Eq. 1, would be equal to one.

The time complexity of the method is O((|L| ?

|V|)|V|), since every node and every link will be explored in

the worst case for each neighborhood created. Parameter |L|

is the cardinality of the set of links (the number of links),

and |V| is the cardinality of the set of nodes. This is the total

time consumed if the computation of local weights is

performed in a sequential manner in all nodes. AWeNoR

can be conducted either centrally or independently at every

node. In the latter case, time complexity of the method is

O((|L| ? |V|)).

4 Evaluation of the proposed method

To evaluate the proposed ranking technique, since there is

no ‘‘ground truth‘‘, we used two real networks. These

graphs represent real social networks, with large connec-

tivity among nodes. We used networks with both undi-

rected and directed links. The visualization of the networks

was performed with Pajek (http://vlado.fmf.unilj.si/pub/

networks/pajek/) and the calculation of the shortest-path

betweenness and PageRank centrality values of the net-

work nodes was done with the aid of CentiBiN

(http://centibin.ipk-gatersleben.de/) package.

The real graphs are the following:

– Zachary’s karate club: a network of friendship between

34 members of a karate club at a US university in the

1970 (Zachary 1977).

– Dolphin network: an undirected network of frequent

associations between 62 dolphins in a community

living off Doubtful Sound, New Zealand (Lusseau et al.

2003).

We also examined the performance of the method in a

medium-sized network of routers of the Internet called

Autonomous Systems (AS). The network we used consists

of 103 nodes. (http://snap.stanford.edu/data/as.html).

Except from the AWeNoR centrality measure, the

betweenness and the PageRank centrality values were also

computed for every graph to compare them. For every graph

ranking, we measure the number of ties that each ranking

algorithm produces and also compute the Spearman’s rank

correlation coefficient (Eq. 4) between pairs of ranking

algorithms. The more ties an algorithm produces, the less

useful the ranking is for use in wireless networks, because it

does not discriminate among network nodes. This is also a

crucial requirement for Web rankings when they are to be

used in search engines. Spearman’s is a non-parametric

measure of correlation widely used to describe the rela-

tionship between two variables that is used to report the

difference in ranking produced by two methods. Differ-

ences di ¼j xi � yi j between the ranks of each observation

on the two variables are calculated. In our case, this measure

is used to evaluate the proposed measure in relation to

PageRank and shortest-path betweenness centrality values.

q ¼ 1� 6
P

d2
i

nðn2 � 1Þ ; 8i 2 G: ð4Þ

For all the networks used to evaluate our method, the

average distance D is computed and this parameter is used

to create neighborhoods (Eq. 5).

N ¼ dDe: ð5Þ

4.1 Undirected experimental graphs

The first real graph, the Zachary’s karate club, is shown in

Fig. 3 and the dolphins graph is depicted in Fig. 4. The

visualization is used here as a means to confirm the

obtained results via human intuition.

Table 3 shows the total number of ties that each of the

three methods produces for the two networks. The numbers

in parentheses represent the number of nodes with zero

centrality value (non-ranked). It can be seen that the

1
2

3

4
5

6

7

8

9

10

11

12
13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28 29

30

3132

3334

Pajek

Fig. 3 Zachary’s karate club undirected graph
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betweenness centrality measure produces a significant

amount of non-ranked nodes, which is a non-desirable

effect when the centrality measures is used in wireless

networks for characterizing the significance of nodes in the

network topology.

Table 4 shows the Spearman’s rank correlation coeffi-

cient computed for every pair of rankings. In the dolphins

dataset, we can observe significant discrepancy in the

rankings produced by AWeNoR with those produced by

PageRank.

Table 5 shows the biggest rank difference observed

between the three methods. For the dolphin and the

autonomous networks, where the number of nodes is rel-

atively large, it is observed that the AWeNoR gives results

close to PageRank. The numbers in parentheses represent

the node where the biggest difference is observed. Table 6

depicts the highest ranked nodes for each graph. We

observe that AWeNoR makes similar to PageRank rankings

for the top-ranked nodes, even though it is a localized

measure, whereas PageRank requires cumbersome com-

putations and knowledge of the whole network’s topology.

To evaluate the proposed method against the competing

ones for the autonomous network, we focus on the biggest

differences observed since the graph is too large to be

displayed in the paper. In the comparison of AWeNoR and

PageRank, we see that node with ID 19 is ranked in

position 95 by our method while PageRank puts it in place

33. On observing Fig. 5, we see that node 19 is rather

isolated in the graph, but is two hops away from node 3

which is ranked high in both methods (PageRank: 16th,

AWeNoR 17th). PageRank tends to reward such nodes with

high score even though their significance in data dissemi-

nation is rather contradictory. Betweeness centrality on the

other hand leaves too many nodes unranked (in the

autonomous network 43 out of 103 nodes are unranked)

making it rather impractical.

Table 6 Highest ranked nodes for karate (top), dolphins (middle) and

autonomous (bottom)

Rank

position

PageRank AWeNoR AWeNoR

Reduced

Betweenness

1st 34 34 34 1

2nd 1 1 3 34

3rd 33 33 33 33

4th 3 3 2 2

5th 2 2 1 32

1st 15 15 5 37

2nd 18 38 58 2

3rd 52 46 18 41

4th 58 34 34 38

5th 38 52 44 8

1st 60 60 60 60

2nd 11 11 11 11

3rd 40 40 40 40

4th 16 16 31 16

5th 1 1 16 31

1

2

34

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37 38 39

40

41

42

43

44

45

46

47

48

49
50

51

52

53

5455

56

57

58 59

60

61

62

P j k

Fig. 4 The dolphins network

Table 3 The number of ties produced by each competitor

Graphs Betweenness PageRank AWeNoR

Zachary’s karate club 16 (12) 11 (0) 11 (0)

Dolphin social network 9 (9) 4 (0) 4 (0)

Autonomous system 45 (43) 31 (0) 30 (0)

Table 4 Spearman’s rank correlation coefficient

Graphs Betweenness-

AWeNoR

PageRank-

AWeNoR

Betweenness-

PageRank

Zachary’s karate club 0.8442 0.8512 0.8747

Dolphin social network 0.7712 0.9457 0.8171

Autonomous system 0.7196 0.8712 0.8566

Table 5 Biggest difference observed

Graphs Betweenness-

AWeNoR

PageRank-

AWeNoR

Betweenness-

PageRank

Zachary’s karate club 14 (26) 12 (10) 13 (10)

Dolphin social network 38 (40) 13 (17) 41 (40)

Autonomous system 56 (67) 62 (19) 50 (67)
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4.2 Directed experimental graphs

The new ranking technique was also tested in directed

graphs. Taking the karate club real graph and converting

each link to a directed arc, the network of Fig. 6 is created.

The direction of each arc is selected randomly.

Table 7 shows that AWeNoR incurs significantly fewer

ties than PageRank does. (Betweenness centrality is not

possible to be computed for this network due to the lack of

strong connectivity.)

Table 8 depicts the ids of the five highest ranked (top-5)

nodes for this directed network. The numbers in paren-

theses represent the position of the node in the ranking

produced by the competitor method, in the cases where this

node does not appear in the top-5 list of the competitor.

From Fig. 6 and Table 8, we gain an insight into why the

AWeNoR algorithm is more accurate in determining the

most significant nodes compared to PageRank in terms of

data dissemination: for instance, node 33 (ranked 4th) is

more crucial in terms of routing than node 19, which is a

sink node. The three highest ranked nodes are the same for

both methods in the karate club graph. Of course, such an

observation is not a proof of the superiority of the algo-

rithms, but it is a strong evidence that produces more

meaningful rankings for the considered application

scenaria.

In the dolphins network (Fig. 4), the nodes with id 38

and 46, which are among the highest ranked by AWeNoR,

have very low ranking position in the PageRank measure.

This is due to the fact that AWeNoR ranking rewards nodes

that belong to many neighborhoods, though PageRank

rewards only those connected to significant nodes. Page-

Rank may rank in high position those nodes that have few

(even just one) neighbors that are significant to the net-

work, without examining if they play any role in larger

neighborhoods, which is desirable by policies applied to ad

hoc wireless networks. In the autonomous network due to

the connectivity of the graph, the two methods give similar

results. The network could not be displayed in the paper

due to space limitations (the graph is too large to be able to

distinguish the node’s ids), but the reader can download the

connectivity matrix from (http://snap.stanford.edu/data/

as.html) and use pajek or any similar program to obtain a

visual representation.

Table 8 Highest ranked nodes for karate (top), dolphins (middle) and

autonomous (bottom)

Rank position PageRank AWeNoR

1st 1 1

2nd 3 3

3rd 2 2

4th 19 (24th) 33 (7th)

5th 4 (6th) 9 (8th)

1st 1 1

2nd 15 15

3rd 16 (4th) 38 (23th)

4th 4 (6th) 16 (3rd)

5th 19 (8th) 46 (33th)

1st 1 60

2nd 11 11

3rd 60 9

4th 9 1

5th 5 (8th) 16 (6th)

1
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4
5
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7

8

9

10

11

12
13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28 29

30

3132

3334

Pajek

Fig. 6 Zachary’s karate club directed graph

Table 7 Number of ties incurred by each algorithm

Graphs PageRank AWeNoR

Zachary’s karate club 21 15

Dolphin social network 23 22

Autonomous system 70 56Fig. 5 A portion of the autonomous network
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5 The AWeNoR–Reduced centrality measure

As described in Section 4, to compute the aggregated

weights, the AWeNoR algorithm has to add local weights of

all neighborhoods in the network. So, for a K-hop ‘long’

network, the AWeNoR algorithm has to run K times, one for

each node. Computing local weights for every neighborhood

can be a very time-consuming task even for medium-sized

networks. To improve the total running time of the proposed

AWeNoR algorithm, we further describe here the AWeNoR–

Reduced ranking method. The AWeNoR–Reduced algorithm

creates neighborhoods only for some nodes, according to a

parameter qi and a threshold A. Parameter qi is used to count

the times that node i participates in paths of all the neigh-

borhoods created by the algorithm in every step. The AW-

eNoR–Reduced runs only cenrtally or with an excessive

change of information between nodes, in contrast to AW-

eNoR that can be executed independently at every node. At

the first iteration of the algorithm, a node i (node with id = 1

is chosen) creates its neighborhood GN,i by detecting all

paths of length N. Every node j that participates in any path

of the node updates the parameter qj (qj ? ?) for every

instance. At every next iteration of the algorithm, another

node is selected randomly and if its parameter qi is below

threshold A, the procedure follows the same steps. If qi is

over A, which means that node i has already participated in

many other neighborhoods, the node i is discarded and the

algorithm moves to next selected node.

The AWeNoR–Reduced ranking algorithm is described

below in pseudocode:

1. Initiate algorithm. Set i = 1.

2. If qi \ A then find all the paths from node i to every

node j which are at most N hops away, thus creating

the neighborhood GN,i.

3. For every path Pi
k ¼ u0

i ; u
1
i ; :::; u

N
i

� �
update parameter

qui8u 2 PK
i except ui

N and ui
0.

4. Calculate the local weight of all the nodes in GN,i

(except from node i) according to the AWeNoR

algorithm.

5. Set i = i ? 1. If the last node of the graph is reached,

then go to step 6 or else go to step 2 (Dimokas et al.

2011).

6. Accumulate local weights to obtain the final ranking of

all the nodes.

The AWeNoR–Reduced algorithm, according to

Tables 6 and 9, achieves the same performance in terms of

finding the most important nodes in a graph, while

requiring fewer neighborhoods to be created (Table 10).

The parameter A is used as a threshold to choose whe-

ther a node’s neighborhood is created or not. Choosing the

value of parameter A is an important issue. Giving A a

rather big value, the AWeNoR–Reduced algorithm degen-

erates to AWeNoR, since all neighborhoods are created.

Setting A equal to zero, a risk of creating disjoint neigh-

borhoods arises, letting some nodes unranked. In the

experiments conducted, a value close to zero was used to

avoid these situations.

Figure 7 shows the effect of parameter A to the meth-

od’s results compared to AWeNoR, along with the number

of neighborhoods created for every such choice. A strict

relation between the method’s accuracy and cost, in terms

of time consumption, is observed. The preferred policy is

to have a value that changes according to the size or con-

nectivity of the network, but its development is a subject of

future work.

6 Conclusions

The issue of discovering which nodes in a wireless ad hoc

network are central to the topology is of fundamental

importance, since it can be used as a primitive method to

perform routing (Hui et al. 2007; Zhang and Wolff 2008),

cooperative caching (Dimokas et al. 2008) and contami-

nation detection.

There exist several centrality measures in the literature,

like shortest-path betweenness centrality, PageRank and

closeness centrality. Betweenness is based on the shortest

paths between nodes. Nodes that lie on many shortest paths

between other nodes are given a high centrality value. In

many cases though, this measure is not useful because it

counts only a small subset of all the paths. Moreover, it

creates hotspots in the communications because it consis-

tently uses very few nodes (Pathak and Dutta 2010). When

Table 10 Neighborhoods created

Undirected graphs AWeNoR

reduced

(A = 1)

AWeNoR

reduced

(A = 3)

AWeNoR

Zachary’s karate club 3 7 34

Dolphin social network 14 17 62

Autonomous system 31 38 103

Table 9 Spearman’s rank correlation coefficient

Undirected graphs Betweenness-

AWeNoR

reduced

PageRank-

AWeNoR

reduced

AWeNoR-

AWeNoR

reduced

Zachary’s karate club 0.8105 0.8438 0.9175

Dolphin social network 0.7925 0.9207 0.8782

Autonomous system 0.7296 0.8517 0.9728
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PageRank is used, the significance of a node comes from

the significance of its 1-hop neighborhoods, leading many

times to misleading results. A sink node may be ranked

very high just because it is adjacent to a very significant

node, even though its contribution to communication is of

no importance. Additionally, these measures need to take

into consideration the whole network topology—they are

‘‘centralized‘‘, which is not acceptable when these cen-

trality measures are to be used for ad hoc network protocol

design.

This article proposes a new measure, namely AWeNoR,

for determining significant nodes. For each node i a

neighborhood is created and all paths with starting node

i are created. For every ‘‘cluster’’ created, a local weight is

computed and a final ranking measure is created by adding

these local weights. The new localized centrality measure

rewards nodes that belong to many neighborhoods and lie

in many paths between nodes of the neighborhood. This

measure was compared to the shortest-path betweenness

and PageRank centrality, and achieved to provide mean-

ingfull rankings with few ties and leave no nodes unranked

for both directed and undirected networks. The AWeNoR-

Reduced, a faster algorithm for finding localized centrality

values, was also presented.

As future work, the proposed measures will be com-

pared to other centrality measures as in Freeman et al.

1991 or Newman 2005. The main goal though of our future

work is to use this centrality measure as a primitive method

in the design of networking protocols, such as cooperative

caching for ad hoc wireless networks (Dimokas et al.

2011), and routing in DTN networks where other attributes

like energy of nodes or link quality could be incorporated

in the centrality measure to better represent significance of

actors in real time.
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