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Abstract Dynamic complex networks illustrate how “agents” interact by exchang-
ing information in a constantly changing network. Typical examples of such
networks are online social networks or human contacts. This article contemplates
the common distribution of time that user-nodes spend on their activities, and
describes a method for identifying real-time influential spreaders. We model the
reciprocal activities of actor-nodes with probabilistic links and propose a tech-
nique for identifying influential spreaders in complex networks with probabilistic
edges. The proposed measure, namely, ranged Probabilistic Communication Area
(rPCA), is evaluated under the susceptible-infectious-removed (SIR) model, where
the results illustrate that rPCA can detect very effective spreaders in a networked
environment with probabilistic edges.

1 Introduction

Real-world entities often interconnect with each other through explicit or implicit
relationships, by transient and continuous ways to form a complex network. Social
Networks (SNs) illustrate such complex interactions between individuals, and show
how information, political views, frauds, advertisements, or rumors (data) flow
through networked populations. Consider the most popular SNs (Facebook or
Twitter), where users gain access to the Internet and their social activities through
diverse wireless devices (smartphones, laptops, ipads) and become embedded to
the Internet infrastructure swiftly for various and different time spans of their
everyday lives, to interact, exchange opinions and ideas, or simply act like tuners for
advertisements. Facebook self-reported statistics note that smartphone users check
online 14 times a day, while an average user spends daily 40min on the site. Now
meditate on the vast amount of data traversing through such networks and how this
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magnitude of information has evolved through time. As reported in [1] in 2007 we
had an average of 5000 tweets per day whereas in 2013 we were at 500 million
tweets on a daily basis [2], representing a five orders of magnitude increase. From
the above considerations one could argue on what share of these vast data is actually
being ‘seen’ by its corresponding audience, that is, friends, followers or broadly
speaking from the connected society, and on how this is further affected by the
different time spans that individuals spend on their social activities.

It is evident that users cannot follow such immense traffic of data, but what of
time-limited messages or alerts? As an example let’s reminisce the Twitter, Faster
Than Earthquakes event. On August 23, 2011, it took 30 s for an earthquake to
travel from Washington DC to New York, but tweets were fast enough to reach NY
quicker than half a minute. To account for many such cases for example of natural
disasters, Twitter has launched the Twitter Alerts: Critical information when you
need it most program in September 2013 for its users to receive reliable information
during these times. In this study we emphasize on such Real-Time Data, RTDs,
that need to be ‘made known’ to the largest possible portion of a social network
at a short time interval (i.e., within a few minutes or hours) and on the fact that
this particular info will serve no further purpose in larger time spans (e.g., days
or weeks). Consider an enterprise announcing a discount of a certain ‘hot product’
but only for a limited stock or a limited time offer, aiming to attract large masses
of consumers. A preeminent question arises; which users should be the targets for
incentive that will initiate a cascade of informed-interested people and increase as
much as possible the number of potential buyers?

Although we presented the problem in terms of activities over technological
social networks, the issue of the effect of concurrent ‘activity’ is present in other
types of complex networks as well, such as human contact networks and their
relationship to infectious disease transmission. Theoretically, in such networks a
short interaction between a susceptible and an infectious person could lead to a
comparable amount of ingested infectious material as that of a long interaction
assuming that the short interaction is more intensive than the long one. However,
prolonged contacts tend to be more intensive than short contacts [3].

Motivation and Contributions

The issue of identifying influential spreaders in complex networks is a well-studied
topic that received increased attention in recent years [4–6]. However, for this
particular framework of data that we are addressing in the present study, the
different patterns in the concurrent activities of ‘connected’ users will constitute
the most essential ingredient for detecting the Real-Time Influential Spreaders,
RTISs, rather than simply focusing in a static image of a social network and
traditional approaches. At this point, we should note that both RTDs and RTISs
are connotations to characterize data with relative short lifetimes and influential
spreaders for such cases, respectively.
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Empirical observations [7–9] note that users in SNs are not active around the
clock, and they show a complex behavior and distribution over the time they spend
on their social activities. A probabilistic framework that follows such complex
behavior could portray the possibility of a link-connection to exist, that is, when
connected users are active, and the dissemination process is in progress. A relative
approach is that reported in [8] where the authors illustrate a probabilistic model that
accounts for a node-user to be active or not (and thus his connections to be present
or not) at the time for example of a disease outbreak or broadly speaking a diffusion
process. It is thus an important feature that we need to consider in order to quantify
the strength of the corresponding propagation.

In a similar approach to [8], we model the existence or absence of connections,
rather than users, by annotating weights on links that correspond to the mutual
time that connected users spent on their separate social activities. Intuitively if
we could locate those nodes that are the starting points for paths of users which
share at a great degree common time in their online social activities, it could
provide valuable insights into better approximate the spreading capability of users
and thus more efficiently ‘control’ the spreading process of RTDs. By conducting
simulations and experiments in different Social Networks, we will see how the
proposed identification technique, namely, ranged Probabilistic Communication
Area (rPCA) effectively combined the activity schedules of connected users,
identified the most influential spreaders and outperformed the competing techniques
in various scenarios.

The present article discusses the issue of detecting influential nodes in complex
networks with probabilistic links and makes the following contributions:

• Investigates the issue of detecting real-time influential spreaders by considering
the mutual time connected users spend on their online social activities.

• Proposes an adjustable centrality measure, the range Probabilistic Communica-
tion Area (rPCA) that accounts for such characteristic and real- time data.

• Thoroughly evaluates this centrality measure under diverse competitive tech-
niques in different real networks.

The rest of this article is organized as follows: An overview of relevant important
works for the identification of influentials is presented in Sect. 2. Section 3 presents
the proposed algorithm. In Sect. 4, we describe our experimental environment, com-
peting techniques, and evaluation criteria. In Sect. 5 we evaluate the performance of
the adversaries and finally in Sect. 6 the conclusions.

2 Related Work

The literature on the problems of maximizing the spread of influence and of
identifying influential spreaders in complex networks is quite rich during the last
decade. In this section, we only mention but a few among many important studies.
We should also categorize networks depending on the pattern of their connectivity,
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that is, directed or undirected networks in order to discuss the direction of the
propagation and finally emphasize on directed networks. The first problem was
posed in [10] and later investigated further providing more efficient algorithms,
for example, in [11–13]. Newer approaches to the design of centralities include
concepts such as κ-path centrality [14] and distributed algorithms for identifying
influentials based on random walks [15]. Other graph-theoretic methods include the
k-shell decomposition of a network [6], where the authors contend that a node’s
location may be the determining factor that defines the influence potential of that
node. Other approaches based on several shortcomings of k-shell are presented
in [5, 16, 17], whereas local techniques that combine effectiveness and efficiency
are proposed in [4, 18].

All these works concern single-layer complex networks. However, the last few
years, we are witnessing an initiative in the analysis of new kinds of complex
networks, where the interacting entities are assumed to belong to more than one
network, called layers. Online social networks, financial systems, transportation
networks are such networks to name a few; more detailed examples can be found
in [19]. The study of spreading processes in multilayer networks has started to attract
significant interest [20]. The works most closely related to the current article, that
is, to influentials detection, are those reported in [21–24]. The blending of all layers
into a single one and then application of traditional options for influentials detection
are proposed in [21]. A generalization of the k-core is proposed in [22] but it results
in a vector of values that cannot be used in a straightforward manner for detecting
effective influential spreaders. In [23], the authors proposed an called KS, which
follows the intuition of [25], that is, aggregates the shell indexes of its neighbors,
and moreover combines the intra- and interlayer spreading rates. However, to our
understanding, incorporating the unknown spreading rates, of (and between) the
layers, is not realistic. In [24], very elegant methods based on tensor analysis are
proposed.

Considering a directed social network, a user i is called a follower of j if there is
a directed link from i to j (i → j), namely, i can receive information from j. Thus
for these network cases, the diffusion takes place through the incoming connections
of a node-user. To detect the most influential spreaders in directed social networks,
researchers often apply the PageRank algorithm [26] where a node i is considered
as influential if it is pointed by many other and important nodes. It is a random walk
algorithm that was first used for ranking relative contents of web pages. A variation
of PageRank, namely, LeaderRank, was proposed in [27] by introducing a ground
node to the initial network, connected to all other nodes through a bidirectional link.
LeaderRank identifies nodes which lead to quick and extensive spreading. On the
other hand, LeaderRank is tolerant of spurious and missing links, which benefits
applications with noisy data. In summary, LeaderRank outperformed PageRank not
only by better identifying the influence potential of nodes, but also by converging
faster to the final scores, and by being more robust to noise and spammers.

Via assigning degree-dependent weights onto links associated with the ground
node, weightedLeaderRank was presented in [28]. For this approach, the authors
allow nodes with higher in-degree to get more scores from the ground node. Since
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the in-degree of a node directly indicates its influence, it is natural to weigh nodes
according to their influence. Weighted LeaderRank outperformed its immediate
predecessor by identifying more influential spreaders, by having higher tolerance
to noisy data, and by having higher robustness to intentional attacks.

Finally, TwitterRank [29], also a variation of PageRank, was developed for
identifying influential spreaders in Twitter. The fundamental difference of the two
algorithms is that TwitterRank develops a topic-sensitive random walk, that is, the
transition probability between users in Twitter is topic-dependent; in a way this
generates a topic-sensitive network structure. Despite being better than PageRank,
the design of TwitterRank takes into account a number of tweets a twitterer
publishes, which makes it susceptible to manipulations if a twitterer deliberately
publishes a large number of tweets.

As we mentioned earlier, users gain access to their networked environment
through diverse wireless devices for arbitrary lengths of time and different fre-
quencies. Such interacting behavior in social platforms resembles that of temporal
networks. Quite often temporal networks are separated into two categories based on
time sequences and time intervals for the interactions between connected individuals
in communication networks. In our study, however, we are searching for connected
individuals who have common online activity, that is, they do not necessarily
exchange messages at arbitrary times but rather they are concurrently active at
regular times. This can be considered as another simplification of temporal networks
where we discuss the probability of existence of interacting paths based on such
observations. For more details on temporal network analysis, readers are referred
to [30] and references therein.

3 Proposed Technique

In this section, we present our proposal, the range Probabilistic Communication
Area (rPCA).

Complex Networks with Probabilistic Links

A complex network G(V,E,w) is a directed graph where V is the set of vertices
(nodes), and E is the set of pairs of vertices (edges). Every edge is described by a
weight w ∈ [0, 1] and a direction. Each vertex involves in- and out-neighbors. As
usual, the number of head endpoints adjacent to a user-node is called its inDegree
(kin), and the number of tail endpoints defines the node’s outDegree (kout). The
weight values associated with every edge define a network structure which describes
the probability for any two connected nodes to be both active, for example, during
a diffusion process. As we will see later in our experimentation the mining and
efficient use of such information will prove a valuable asset for the spreading of
RTDs.
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r-Hop User Communication Paths (UCPs)

A user communication path (UCP ) on a directed complex network is a directed path
consisting of n individuals and n-1 connections among them such as no user appears
more than once, for example, a → b → e → j in Fig. 1. For simplicity, the example
network is a Directed Acyclic Graph (DAG). To complete our definition, we also
need to define the range for such interacting paths as the number of connections
that form it or the hop distance from the initial node, for example, a to j. For
our technique, the communication paths emanating from each individual node will
define its significance in the network. The weight values on the connections will be
used to investigate on the quality of paths through which a user i “sees” the rest
of the network in range or in other words to search for users which share common
time to their social activities. Ideally we would like to identify user paths such as
a → x → z, however, in a realistic networked environment, we cannot expect users
to have identical online activity schedules. Furthermore since those node paths are
probabilistic in nature, we need to also quantify the strength of those paths. Hence
we apply the following formula to measure the strength of an r-hop interacting path
(SUCP r):

SUCP r =

r−1∑

j=1

wj · wj+1 (1)

where r defines the range of a particular UCP and wj is the weight value at j hop
distance from the originator, that is, the weight of the corresponding connection.
Intuitively if we could rate nodes on the basis of their UCP s, we could set the right
paths for the spreading of real-time data.

This methodology can sustain the case when we want to model topic similarity
among nodes. In this case, each link connecting nodes i and j can have one more
weight factor, namely, σi,j ∈ [0, 1] that will describe the topic coherence among
neighboring nodes [31]. Therefore, the total link strength will be evaluated as wi,j×
σi,j . In this article, we assume σi,j = 1 ∀i, j.

Up to this point, we presented our proposal for quantifying the strength of a
UCP . However, how to effectively combine the weight values associated with the
corresponding connections in a communication path and define its significance is
still an open issue. Another formula could be to simply acquire the product of
its weights, however, such consideration will provide no distinction for paths with
relatively equal-weight probabilities. For example in Fig. 1, for the interacting path
a → b → e → i, we would obtain a value of 0.063. The same value, however,
would be attained if we sorted the weights in any possible way, for example, by
reversing the probabilities of b → e and e → i or by placing the weakest interaction
first and thus decreasing the probability of existence for the path. Another policy
could be to assign a measure of importance for a specific weight depending on its
hop distance from the originator, that is, weights closer to the initial node in a UCP
are perceived as more vital. However, except for the fact that a tunable parameter
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Fig. 1 rPCP identifies
nodes which possess the
characteristic that from these
nodes emanates “strong”
paths. For 2 hops distance:
2PCA(a) = 17.283 and
2PCA(b) = 1.1 assuming
that both i and j have 2

outgoing neighbors and x, z

are hypothetic nodes, that is,
not included

would have to be added, the significance of an interacting path like a → d → f → j
which starts with a relatively weak weight and henceforth is composed of strongly
connected users would be belittled with such consideration.

Range Probabilistic Communication Area (rPCA)

Following on these requirements, we built our proposal for defining centrality
measures over graphs with probabilistic edges for range-limited neighborhoods.
The rPCA value of a node i within a specified range r is computed as the sum
of SUCP r’s emanating from i as follows:

rPCA(i) =
n∑

j=1

SUCP r(j). (2)

Note that nodes quite often share similar vicinities, that is, they may have a
large number of common friends, and thus a certain path may be traversed by
more than one way, for example, a → b → e → i and a → c → e → i. For
paths of interaction with hop distance greater than 2, the appearance of cycles,
for example, i → j → k → j is a frequent phenomenon, especially when
studying social networks often characterized as community networks, that is, dense
connections within neighbors in the same community. However, considering “cycles
of interaction” and thus returning to previous paths (or revisited node regions) are
very likely to degrade an algorithm’s performance, and thus these occasions are
omitted by definition from our algorithm. In Fig. 1, we illustrate a toy example for
the rPCA method.
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The proposed centrality measure can be defined for both, the entire network
(∗PCA), and for neighborhoods around each node. It is within our scope to
maintain locality in order to provide an effective and efficient algorithm that can
be applied in large-scale networks and real-time applications, and thus the range of
UCP s is limited at low values, that is, 2 and 3. Generally, we could search to any
number of hops; however, we understand that increasing the range of UCP s beyond
the 90-percentile-diameter of a network (cf. Sect. 4) will provide little additional
information to our approach since only 10% of the total size of the network is yet
uncovered.

Although we have presented our method via the out-links of a node, when
information flows through the in-neighbors of the network nodes as in our evaluation
of Sect. 4, the implementation of UCPs is straightforward by following the in-links.

4 Performance Evaluation

For the evaluation purposes, we had to select appropriate competing methods, use
networks with probabilistic edges, and also propagation models. In this section we
describe our simulation environment and data sources.

Competing Techniques

In this subsection, we briefly describe the competing algorithms used in our
simulation to evaluate the proposed method. Note that since information will
flow through the in-neighbors of the network nodes the competitors are computed
accordingly.

A diverse list of competitors were chosen regarding geodesics, the position of a
node in the network, local techniques, or random walk-based approaches. A plethora
of studies so far use the local degree centrality of a node to provide a baseline
method for measuring the influence of nodes in complex networks.

(1) Likewise in our experimentation, we apply the weighted version of the
approach. The weighted degree centrality (wDeg) of a node-user i or
equivalently the strength of i is defined as the sum of the weights from the
connections incident on i:

wDeg(i) =
∑

j

wji (3)

where j depicts the neighbors of i, that is, those nodes that i can exert influence,
and wij stands for their associated weights.
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(2) The farness of a user-node i is defined as the sum of its shortest distances
to all other nodes of a network and the inverse of farness is noted as the
closeness centrality of i. For its weighted implementation (wClo), the weights
will describe how close or how far connected individuals are to each other as
given by the formula:

wClo(i) =
∑

j

1

dwji
(4)

for all different j nodes of a network. In our framework, wClo aggregates
the weights on the shortest path and thus likewise our approach combines the
weight values to provide an alternate technique that measures the strength and
probability of existence for those paths.

(3) Shortest-path betweenness centrality describes the number of shortest paths that
use a node i in order to reach other nodes of a network. Previous studies [5,
6, 18] found its performance insufficient to measure the influence potential of
nodes in complex networks. Here we evaluate its performance in a relatively
different experimental environment of weighted interactions and find similar
conclusions (wBet):

wBet(i) =
∑

s �=i�=t

σw
st(i)

σw
st

(5)

where σst is the total number of shortest paths from s to t and σst(i) depicts the
number of those paths that pass through i.

(4) A weighted version of the PageRank algorithm where the weights are propor-
tional to the probabilities that a random walker will select a particular edge
when choosing an outgoing connection from the current user-node [32]. There-
fore, edges with larger weights are assumed to be traversed more frequently and
are thus more important:

wPRi(t+ 1) = (1− d) + d ·
N∑

j=1

wji∑N
l=1 wjl

wPRj(t) (6)

where wji is the probability of visiting node i from j if j is an in-neighbor to
i otherwise wji = 0, d is the damping factor accounting for random jumps (in
our experimentation, we assume no such occasions) and N stands for the total
number of nodes in the network.

(5) The next and final competing algorithm weightedLeaderRank (wLR) was
found to be more effective for the identification of influentials than PageRank
and LeaderRank in directed networks [28]. Furthermore, it was proven more
tolerant to noisy data by adding or removing links from the original network.
We understand, however, that the traditional wLR algorithm does not use any
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information regarding the weights of the links. It is used in our framework as
a baseline method to measure the loss impact for not taking into consideration
information through the weighted interaction. Nonetheless, our experimentation
showed interesting results. As mentioned, it is a variant of LeaderRank, which
introduces a ground node connected to all nodes of a network and recursively
assigns scores to nodes depending on their kin:

wLRi(t+ 1) =

N+1∑

j=1

wji∑N+1
l=1 wjl

wLRj(t) (7)

where wji is equal to 1 if there is a directed link from j to i and 0 otherwise. If
the destination node is the ground node then wjg = kαin of j, where α is a free
parameter set to 1 in our experimentation.

For the directed and weighted implementation for most of the above
algorithms—excluding wLR and wDeg—we use the “igraph” R package.1

igraph considers the weights assigned to each link as costs, that is, the largest the
value the weaker the path. However, in our experimentation, weights indicate
the strength of a link and thus we invert the original weight values for wBet
and wClo. A very popular method for the identification of influentials is the k-
shell decomposition analysis [6] and its weighted versions, for example, [33].
However, to the best of our knowledge, there is no formal definition of the
algorithm for directed and weighted networks. Could we have used measures
such as μ−pci ? To such methods which are based on link counting and coreness,
it is not clear how to quantize a “fractional degree” to its integer counterpart.
Besides, such a conversion would loose significant part of the information
carried by the probabilistic link.

Simulation Settings

Datasets

Nowadays there is a wealth of real datasets which concern complex networks;
however, it is hard to find many input networks with probabilistic links with varying
size and topology and varying distribution in the links’ probabilities. Thus, in this
article, we follow a dual methodology: We work with a real complex network to
prove the applicability of our method in a real setting, and also use four real (initially
unweighted) complex networks, which we annotate their links with probabilities
drawn from various distributions, so as to test the scalability, effectiveness, and
efficiency of the proposed method across a range of network sizes and link weight
distributions.

1http://igraph.org/r/.

http://igraph.org/r/
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Table 1 Networks base attributes

Network Nodes (V) Links (E) Diameter 90-EPD E/V Type

ego-Twitter 81,306 1,768,149 7 4,5 21.74 Social

soc-Slashdot0922 82,168 948,464 11 4,7 11.54 Social

soc-Epinions1 75,879 508,837 14 5 6.7 Social

wiki-Vote 7115 103,689 7 3,8 14.57 Social

The real probabilistic network is a contact network measured by the SocioPat-
terns collaboration2 using wearable proximity sensors in a primary school, and
covers 2 days of school activity. The sensors detect the face-to-face proximity
relations (contacts) of 242 children [34]. The weight of a link is the aggregated
contact duration of a pair of children. We normalize the links into the [0, 1] interval
by dividing each weight with the maximum weight found in the network. The
experimental results which concern this real network are presented in Sect. 5.

The procedure for annotating the network links with weights is described in
the following lines. We obtained our experimentation networks from the Stanford
Network Analysis Platform [35]. For our evaluation purposes, the experimented
networks were selected based on their connectivity, that is, three networks with a
relatively equal number of nodes and decreasing in the number of their respective
connections and finally a significantly smaller network. Specifically, we used
the ego-Twitter network crawled from public sources, where followers receive
information from their followees; Soc-Epinions1, a who-trust-whom social network
of a general consumer review site, where users choose whether or not to trust
reviews on products; soc-Slashdot0922, a technology-related news website, which
allows users to tag each other as friends or foes; and finally Wiki-Vote, where nodes
represent Wikipedia users and a directed edge from node i to node j represents
that user i voted on user j. The base attributes of the aforesaid networks are listed
in Table 1. The 90-effective-percentile-diameter (90-EPD) denotes the number of
edges needed on average to reach 90% of all other nodes.

Generation of Probabilistic Links

For our simulation, the probabilities for the edge weights are assigned based on the
Zipfian distribution for a range of skew values when the parameter s ∈ [0.1, 0.9].
The Zipfian distribution depicts the frequency of occurrence, for example, of a word
randomly chosen from a text or the population rank of a city randomly chosen from
a country. In our framework, it will depict the frequency of strong interactions. As
s increases, we increase in the skewness for the distribution of weights and thus
the strong weights will become more rare. In this study, we assume than any two
connected nodes would share some common time of networked social activity, but

2http://www.sociopatterns.org.

http://www.sociopatterns.org
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also there are no identical schedules, that is, w ∈ [0.1, 1). The resultant weight
values will stand for the mutual time spent by nodes on their online social activities
and thus depict the probability of an edge to be present or not at the time of the
diffusion process. Links with values close to 1 are mostly active in our inspection
time, whereas values near 0.1 are considered mainly inactive. According to these
probabilities, we take ten ‘snapshots’ of the input graph resulting in ten abstract
network images. Similar to [28] to obtain statistically unbiased results, we repeated
the computation 100 times for each vertex in each network image, that is, averages
over 1000 spreading processes.

Propagation Model and Influence

As far as the diffusion model is concerned, we employ the widely used susceptible-
infectious-removed (SIR) model. SIR is commonly used for studying the spreading
of epidemics in complex networks, where the infected nodes will either get
immunity or die [36] and thus is suitable for our experimentation. We assume that
an interested user propagates “data” only once, that is, users will not repeatedly
send the same information to their respective vicinities. The Susceptible-Infectious-
Susceptible (SIS) model is another popular method also used for the spreading
of epidemics. SIS, however, has no immunity (like flu), and thus nodes get
reinfected and further contribute in the diffusion. However, such consideration in our
framework would include the provision of incentives to users in order to motivate
them for propagating a certain datum a number of times.

In this study, we model the penetration of RTDs in a networked environment,
with fixed transmissibility (infection rate) λ, for all user-nodes. SIR models three
possible states:

• The susceptible state S, in which the S nodes are vulnerable to infection.
• The infected state I , in which the I nodes try to infect their susceptible neighbors

and succeed with probability λ.
• The removed state R, in which nodes have recovered from infection and cannot

be reinfected.

The diffusion proceeds as follows: In the initial phase, all nodes are in the S
state except one node in I. An infected node is given a single chance to infect
its susceptible neighbors and succeeds with probability λ. Immediately after and
without loss of generality [28], the node enters the R state. The process continues
until there are no nodes left in the infected state. Similar to [5] given a directed
network, the influence of a node i, denoted by (IFi), is defined as the average
number of removed user-nodes at the end of the spreading process if i was
the initially infected node. Conventional techniques for measuring the epidemic
thresholds [37] in the evaluated networks cannot be employed in our case study,
due to the probabilistic nature of in- and out-neighbors, and thus we confined our
work to a range of λ values between 1 and 10%.
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Evaluation Criteria

Kendall’s Correlation (τ )

To evaluate the ranking abilities of each competing method with respect to the actual
spreading potential of each node, we use the Kendall’s Tau ‘b’ rank correlation
coefficient (τ ) [38]. It is a statistic used to measure the association between two
measured quantities, for example, (2PCA, IF). When τ = 1, we have a perfect
correlation, indicating that when node i is ranked before j by some method, that
is, with greater 2PCA, then its spreading capability is also higher. For τ = 0,
the measured entities are considered neutral, whereas τ = −1 implies opposite
correlation. Generally, the closer we get to 1, the better the correlation of the
evaluated approach.

Fraction of Ranked Nodes: False Index

As depicted in Fig. 2 for the lower spreading rates, there is a large number of users
with zero influence, for example, over 70% for the soc-Slashdot0922 network when
λ = 2. Applying Kendall’s correlation to such unfiltered values will provide harsh
results. In our experimentation, we take a closer look for each λ value to provide a
more complete assessment and thus the ranked sample used for the ranking process
will be composed of user-nodes with IF > 0, namely, p users. To complete the
evaluation of the results and conclude on which technique better identifies the
influence power of nodes, we also need to provide an assessment for the rest of the
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1−p non-ranked users. The False Index depicted in Figs. 3(upper right) to 4(bottom
right) fills this void. To obtain the False Index, we calculate for each node in 1 − p
the number of nodes in p whose index is lower from that particular node’s. In other
words, we measure the average number of nodes which, although did not succeed in
propagating, were ranked with higher index by some users in p, for example, with
greater 2PCA. Reasonably, a small False Index indicates better results.

5 Results

Impact of Infection Probability

In this section, we evaluate the efficiency of each competing method in ranking
nodes according to their actual spreading potential, when varying in the strength of
the propagation in four different Social Networks. For the distribution of links in
Figs. 2, 3, 4, 5, 6, 7, s is set at 0.7. In almost all the evaluated networks, we observe
that the most abrupt changes in the curves of correlation for all methods occur at
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Fig. 3 (Top: Twitter plots). In almost all different spreading rates for the ego-Twitter network,
the proposed technique significantly outperforms its competitors. (Bottom: Slashdot plots). For the
soc-Slashdot0922 network, we observe that our approach coincides with the rest of the competing
algorithms only for the higher spreading rates
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Fig. 4 (Top: Epinions plots). As the spreading rate increases, our two-fold approach maintains its
superior performance as compared to the rest of the competing techniques. (Bottom: Wiki plots).
For the final network case, an oscillation for the most accurate ranking is observed at the lower
spreading rates. Nonetheless, the proposed technique is found within the higher τ values

the lower λ values. This is partly because the largest leaps in the percent of the
ranked p users occur within the fist few increments of the spreading rate, that is,
when λ < 4 for most of the evaluated networks (about 6 for the Wiki-Vote), where
we observe that the fraction of ranked nodes drastically changes. For instance as
illustrated in Fig. 2, for the Twitter network when λ = 2 the p nodes constitute
about 15% of the total size of the network, whereas when we move to λ = 3 this
percent is close to 58%. The changes in the curves of τ however are not only due to
the increasing number of the p users used in the ranking process. As the spreading
rate increases, the influence of nodes from previous λ values also changes and the
same may happen to the ranking between those nodes in subsequent spreading rates.

Considering the results in Fig. 3(upper left), Kendall’s coefficient for 2–3PCA
when λ = 2 is above 0.75, whereas the rest of the competing techniques are found
below 0.5. Similar observations can be made for the soc-Slashdot0922 network, that
is, the largest differences in τ are found at the low spreading rates. For Fig. 4(top
left) and (bottom left), however, the above observation does not hold. For these
cases, we observe a more sedate behavior of the curves as we increase in λ.
Apparently, the probabilistic property of the networks affects the dynamics of a
cascade and thus in Sect. 5 we investigate on the quality of the probabilistic links.
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Fig. 5 wClo was found to coincide with the proposed technique in a few configurations. The
presented heat plots illustrate that influence is closely related to 2PCA. On the contrary, for wClo,
we observe that the medium values depict an amplitude of influence values
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In Fig. 3(bottom plots), when λ is around 9%, wDeg and wClo coincide with our
approach. It should be emphasized that for very large values of λ, the τ values
of correlation for the competitors are bound to cross over and oscillate. This is
due to the fact that on such occasions an epidemic will occur regardless of the
characteristics of the originator. For the higher spreading rates, the true influential
nodes are very likely to get infected at some point as the diffusion progresses,
and thus result in an epidemic outbreak, even though the originator is not truly
an influential. Besides by using large λ values, the role of individual nodes in the
diffusion process will no longer bear significance [5, 6, 16, 17]. When considering
the different ranges of our approach, we can see that for the low spreading rates
there is an oscillation for the most accurate ranking between the two methods.
However, as we increase in λ for all network cases 2PCA always obtain higher τ
values. Such consideration indicates that local information of a node’s surroundings
(communication paths) is more favorable as we increase in the spreading rate.

For an overview on the False Index, 2–3PCA is found at the lower percentages.
wClo illustrates similar behavior; however, the rest of the competing techniques
illustrate significantly higher values. Note that the False Index does not provide any
information about how accurate the ranking for the p nodes is but rather acts as
a further criterion for each respective technique. Ideally, we would obtain a zero
False Index indicating that none of the 1 − p users has higher index than any
node in p. Generally, a low False Index coupled with a high τ will promote the
most efficient algorithm for the addressed issue. Clearly, the proposed technique
supports the desired outcome. Only at the higher spreading rates in Fig. 3(top left)
and (bottom left) 2–3PCA illustrates higher False Index. However, these cases are
trivial since as depicted in Fig. 2, almost all nodes are within the p node set.

Focusing separately on each competitor, wDeg is used as a baseline method
to illustrate how complete locality serves in quantifying the spreading power of a
node. For its overall evaluation, it is indicated by our results as a moderate approach
for our ranking purposes and real-time data. When considering its False Index,
we can see that wDeg is rated among the three worst-performing methods in all
evaluated network cases. This observation indicates that simply considering the
total strength of a node’s local connections is not a good indicator to quantify its
spreading influence. For example, a high wDeg index may be accumulated by many
but otherwise weak interactions which in our framework is interpreted as regularly
absent connections. To our perception, such occasions will result in insignificant
influence results, and may be the reason for wDeg ’s high False Index values. As
another contributing factor to its medium performance, we can say that wDeg does
not ‘carry’ any information about the position of the node in a network. Therefore,
although a node might me connected to its immediate vicinity with strong links,
if it is positioned in the periphery of a network [6], reasonably we expect that its
influence will be rather diminished.

Another interesting point seen through our simulation is the performance of
wLR. Reminisce that for this particular method no information about the activity
schedules is used, and thus we expected a relatively low correlation in our frame-
work of weighted interactions. Nonetheless, it was proved rather compensatory as
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a competing technique which indicates that wLR may indeed be a good indicator
for the spreading potential of nodes in unweighted networks. Although the τ values
of correlation for wLR are significantly lower from our approach, it was found to
be comparable and even better on many occasions when considering the rest of the
evaluated techniques, for example, as illustrated in Fig. 3(bottom left) or 4(top left).
Generally, its performance can be considered relatively similar to wDeg’s; however,
we can conclude that wLR provides a more accurate ranking if we consider the
False Index of the two aforementioned techniques, that is, Wdeg’s False Index is
always higher.

In contrast to wLR, wPR accommodates information from the weighted
interactions in the sense that links with higher weights are traversed more often.
Both techniques were found to follow approximately the same trend in all evaluated
networks as the spreading rate increases, that is, their illustrated curves either
both ascend or descend. However, our experimentation showed that wLR obtained
higher correlation with influence and also significantly lower False Index values.
Nodes with no outgoing links, the sink nodes, which are indeed present in the
evaluated networks are not well handled by PageRank, since they decrease the
PageRank overall [39]. To our understanding, such inefficacy overestimates the
spreading power of a node and may be the reason for wPR’s low correlation and
the highest False Index values. Generally, through such methods users pointed by
many other and important users are elected as strong influencers; however, as also
noted in [26, 40] quite often the kin of a node is not sufficient to characterize its
influence capacity.

Next we investigate on wBet and find that this particular method has the worst
performance in all evaluated networks, while other studies [5, 6, 18] also note its
inability to capture a node’s influence capacity. Its low efficiency can be explained if
we consider that through wBet, node-users who are unique intermediates for some
other nodes (or medians leading to different communities) are elected as important
entities. However, in such cases their capability for influence and propagation may
well be overestimated if these nodes lead to regions with sparsely connected nodes
or small sized communities. In our simulation where the problem of identifying
influential spreaders is further enhanced by considering the time distribution of
nodes social activities, wBet will be at a further disadvantage if those links
correspond to nodes with highly uncommon time spans. As a final observation for
wBet in our experimentation, we found that among the p user-nodes, there was a
significant amount of nodes with zero betweenness scores, which also explains the
high False Index values of the competitor. This observation indicates that nodes
which do not reside in any shortest path may be more influential from nodes
with higher betweenness scores, and further confirms that the influence cannot be
measured through the shortest paths that pass through a node.

Finally, wClo utilizes useful data through the weighted interactions, in the sense
that nodes connected through weak links are considered to be relatively far to each
other. However, as shown in our simulation in most of the illustrated results, simply
aggregating the strength of the connections to obtain the average distance of a
node to the remaining nodes of the network lacks when compared to our approach.
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We attribute its lower performance to the following: first, although the effective
diameter for all network cases is relatively small, for example, between 4.5 and
5, there are still more than 8000 nodes for Twitter and Slashdot0922 networks,
and more than 7500 for soc-Epinions within a diameter of 7,11, and 14 hops,
respectively. However, considering long interacting paths would include a mixed set
of connections, that is, a relatively long path may be composed of both strong and
weak links. To this end, we expect that techniques that utilize global information of a
network’s connections to define the significance of a node in the network will furnish
varying results. Figures 3 to 4 confirm our statement. Lastly, unlike our approach,
wClo considers a single communication path to all other nodes from the focal node,
and in particular the shortest (strongest) paths to those nodes. Nonetheless, rather
than a single strong path, it may be more favorable to take into account a number
of interacting paths that reach a single user-node, that is, multiple paths, in our
framework of complex networks with probabilistic links.

In Figs. 3(bottom plots) and 4(bottom plots), we found that wClo coincides
with our approach significantly and thus we advance to thoroughly understand the
relation of the two methods, that is, 2PCA and wClo with influence in Fig. 5. The
spreading rate is set at 10% for both networks where the aforementioned techniques
are closer. The heat values depict the IF in percent, for each user-node with pair
values (2PCA,wClo). For nodes with the same pair values, the average IF is used.
Note that each axis is normalized to its largest corresponding index. Moreover the
outer plots are ranged up to a certain value of 2PCA which is then resumed in the
embedded charts of each corresponding network to illustrate more precise results.
From these figures, we can further argue that 2PCA is the better indicator for
the spreading influence of nodes in complex networks with probabilistic links and
further strengthen the superiority of the proposed technique. From the embedded
charts, we can understand that the highest index values for both methods indeed
correspond to the most influential spreaders. However, from the outer plots, for
example in soc-Slashdot09022, we can see that for a range of values in 0.7 to 0.8 for
wClo there is a wide variety of influence scores, that is, approximately between 4
and 14%. Such observation indicates that the medium values of the competitor
cannot distinguish the influence potential of nodes in contrast to 2PCA which
provides a more accurate ranking. We found similar conclusions when comparing
wClo to 3PCA.

Overall, our experimentation showed that for our technique, paths limited in the
near neighborhood of the focal node, that is, two-hop UCP s, are usually sufficient
to characterize its role in an epidemic. In our framework, the probabilistic property
of the networks affects the diffusion dynamics and thus we urge for a technique
that effectively handles the different probabilities for connected nodes. Our ranged
approach was found quite effective and efficient that better identified influential
spreaders in most of the observed network scenarios.



Influential Spreaders in Complex Probabilistic Networks 79

Spreadability

In this section, we illustrate the results in Figs. 6, 7, 8 where the x-axis represents
the values of each competing technique and the y-axis the corresponding influence
(IF ). For a better overview on the competitors, we illustrate the results for a range
of λ values, that is, 3,6 and 9%, respectively. We found similar qualitative results
for the rest of the evaluated networks. In this section, we measure the different
influences of user-nodes with approximately equal index scores, that is, for relatively
equal 2PCAs what is the range of IF values. Apparently the smaller the amplitude
of IF the better the technique. It is evident that among all competing methods
2PCA illustrates the best correlation with influence which is indicated by its thin
ascending curve which increases in IF as 2PCA increases. Similar conclusions can
be made for 3PCA; however, as we increase in the spreading rate 2PCA illustrates
better performance. These observations are consistent with the results in Fig. 4(top
left). For wLR and wDeg as previously noted, we found similar behavior. For the
lower spreading rate (λ = 3), we observe that there is a wider range of IF values for
wDeg and moreover the slope of the curve for wLR is greater. These observations
explain the higher τ for the latter in Fig. 4(top left). Nonetheless, as the spreading
rate increases, their difference diminishes and when λ = 9, wDeg has a thinner
curve and thus better correlation.

When λ = 3, for wPR we notice that there are a few nodes with very
large values, for example, around 0.8, which have insignificant or zero influence.
Moreover in 0.1 to 0.3 the amplitude of IF ranges from almost zero influence up
to the largest value. These observations persist as we increase in the spreading rate;
however, such inefficacies will significantly affect the correlation of the technique
with influence. A similar amplitude of IF values is illustrated for wBet, although
for significantly more user-nodes, which further distances the algorithm for use in
the identification of influentials. Finally, following on the performance of wClo,
we understand that the lower values of the technique correspond to users with low
or insignificant IF , whereas the highest index scores indicate the most influential
nodes. The problem of the competitor lies to its medium values, that is, for a range
around 0.7 (which increases as λ increases) where we observe a wide variety of
influence scores, quite similar to Fig. 5(upper) for soc-Slashdot0922 network. Such
observation afflicts the competence of the algorithm for the addressed issue and
further strengthens the superiority of the proposed technique.

For any influential spreader detection algorithm in order to be characterized as
an efficient one, it is important to have a steep ascending curve, which is ‘thin’,
especially as we move to larger values of a technique along the x-axis. 2-3PCA
was found to adopt such behavior, taking the lead on its competitors in both steep
upward slope and smaller deviation in IF in all network cases.
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Fig. 9 Ranging in skewness for the distribution of links (spreading rate is set at 2%)

Impact of Zipfian Skewness

In this set of experiments, we investigate on the skewness of the Zipfian distribution
as s increases. Due to similar results, we present only those for the ego-Twitter
network in Fig. 9. The spreading rate is set at 2%. The percentage of nodes that
succeeded in propagating (p users) is illustrated with the colored cycles mapped to
the corresponding heat values in the palette. As a first observation, we note that as
we increase in s for the distribution of links, the number of users that are able to
propagate in their respective vicinities decreases. This phenomenon is anticipated
as we distance our experiments from uniform distribution and gradually force the
weights toward the lower possible values. In our framework, such configuration
results into frequently absent connections resembling a realistic social environment
where we cannot expect node-users to have largely common time spans for their
social activities.

As shown in Fig. 9 most of the competing techniques illustrate similar behavior in
both evaluation criteria, that is, decreasing and increasing trend for the False Index
and τ , respectively. For the lower s values, we observe only small increases in τ .
However, as we further increase in s, the changes in τ become more evident. This is
due to the fact that for the larger skews, the now fewer strong links and interacting
paths become more clear for the competitors. This remark is most visible when
s > 0.7 where we observe the most significant changes for all methods. wLR,
however, shows minor changes in τ , an observation somehow coherent with [28]
where the authors explain the robustness of the technique in “noisy” networks, that
is, missing links.

When we have a fairly good distribution for the weights (low skewness), we
observe that 3PCA obtains the highest correlation followed by 2PCA, whereas
the rest of the competing techniques obtain significantly lower values in τ . This
observation indicates that when we have many strong interactions, that is, nodes
with highly common activities, accumulating information from relatively long
UCP s indeed results in better correlation. In an opposite scenario where node-
users have significantly different schedules (large skewness), the strong weights
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become more rare. Using long paths composed of weak interactions will degrade
our algorithms performance which explains the steep fall of 3PCA for the higher
s values. Conversely thinking, we can understand the illustrated behavior of 2PCA
which uses short-ranged communication paths and takes the edge on our ranged
approach in the aforesaid cases. The significant difference in the False Index values
between the competitors and 2–3PCA further strengthens the superiority of our
method. For instance, 2–3PCA’s “misjudgment” near 0.9 becomes almost zero,
whereas in most of the evaluated scenarios (different skews) it is found below 5%.
Finally we conclude that in a framework with probabilistic links that portray the
property of active nodes as described in our work, considering multiple paths and
moreover multiple alternative paths (unlike wClo) is a first step for devising an
appropriate method for the identification of real-time influential nodes.

Evaluation with a Real Complex Network

After the detailed performance evaluation of the methods across a range of network
sizes and link weight distributions, we use a real weighted complex network in order
to confirm the practicality of the problem examined and also to further support
the superiority of the proposed method. Recall from Sect. 4 that this is a contact
network measured by the SocioPatterns collaboration3 in a primary school. The
sensors detect the face-to-face proximity relations (contacts) of 242 children [34].
The resulting network has 242 nodes and 4024 links, after removing the nodes terms
as “Teachers” and their interactions, because the network offers no possibility to
differentiate between different teachers. Figure 10 depicts the number of interactions

Fig. 10 Distributions of the
link weight (i.e., aggregated
contact duration) of the real
weighted network
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3http://www.sociopatterns.org/2015/01/a-high-resolution-social-network-measured-in-a-
primary-school/.

http://www.sociopatterns.org/2015/01/a-high-resolution-social-network-measured-in-a-primary-school/
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Fig. 11 Evaluation of competing algorithms over the real weighted network

per pair of children. According to the methodology of data collection (sensor
beaconing), each contact lasts for 20 s. Thus, this figure shows in an equivalent
way the aggregated contact duration of a pair of children, which is the link weight
in our case. Evidently, this distribution follows a power-law, where the majority of
the pairs of children have less than ten contacts.

The evaluation of the competing algorithms is presented in Fig. 11. The first
comment concerns the transmissibility rates in order to achieve high enough
infection. The generic comment is that the infrequent student interactions require
higher transmissibility rates for successful transitions. Specifically, for the lower λ
value, only about 2% of the network is infected, for example, from an emerging flu
originating from the most influential student, whereas when λ = 60, the infected
students rise up to 30%.

Regarding the performance of methods, we observe that the best strategy—
consistent with our previous results—is 2PCA, whereas wBet is the worse strategy.
The position of the second best-performing strategy is now occupied by 3PCA,
wDeg, and WPR (subject to some variation). The interesting thing is that wClo,
which was steadily the third winner in our earlier finding, now is fifth. Based on the
rankings we obtained for this real network and the conclusions by Figs. 10 and 9, we
can say that the link weight distribution of this network is highly skewed for which
networks we already have seen that the performance of 3PCA and wClo degrades
significantly. Finally, complementary to the False Index illustrated for the artificial
networks, we observe (right plot Fig. 11) no different qualitative results, that is, the
proposed technique is found at the lower false values, which further strengthens the
superiority of 2–3PCA for the addressed issue.

6 Conclusions

The evolution of social networks to date indicates that the amount of information
flowing though user interactions is only going to increase. In this article, we argued
on what portion of information remains ‘unseen’ from interested users due the
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continuous flow of data in such networks. With this consideration, we focus on
‘pieces’ of information with limited life spans, that is, for data that are interesting
to some users but only for a limited time (RTDs). In order to push information
into a network and spread RTDs to the largest possible extent, we need to account
for users who share at a great degree common time in their social activities. With
this demand, social networks must be remodeled to probabilistic structures. In this
study, we used probabilistic links to simulate the probability of connected users
with common social activity, and proposed a centrality metric, namely, rPCA,
which accounts for probabilistic communication paths around the focal node. The
proposed technique was evaluated under different spreading rates and distribution
for the weight probabilities, and proved superior from its competitors in ranking
nodes according to their true spreading potential. Finally, to our understanding,
how each method uses-filters the lower weight values is a determinant factor to
its performance, since users with low common time spans will contribute little to
each other’s influence. Moreover in order for RTDs to be substantially propagated,
we need not only consider the strength of each individual link separately but rather
as combined attributes within the interacting paths. For our future direction, we
intend to apply different approaches for quantifying the strength of the UCP s and
further improve our formula for the identification of influential spreaders. Also,
other factors could be considered in defining the weights on edges, for example,
the characteristics of the individual nodes, or the characteristics of the communities,
could play a significant role in communication.
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