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SYNOPSIS AND

CONTRIBUTIONS

In the context of the present dissertation we focus on Military multilayer wireless networks
and invest on the ad hoc network paradigm to improve their performance. We envision these
Tactical wireless networks as having layers of Mobile Ad hoc Networks (MANETS) which

will be all connected together as part of a seamless overarching network, allowing information,
from multiple sources, to flow faster among its participants.

Towards the implementation of this vision first we build on the (minimum) Connected node
Dominating Sets theory and propose novel distributed algorithms to efficiently connect multilayer
ad hoc networks so as to reduce their latency, improve their scalability and increase their lifetime.

Then, we investigate the problem of distributed computation of a resilient network overlay
for communication link monitoring in multilayer ad hoc networks. A hard to address problem,
especially using distributed algorithms, because of coordination failures related to the mul-
tilayer environment which can lead to loss of communication between the network layers or
over-dependence on a specific layer. In order to solve this problem we build on the (minimum)
Edge Dominating Sets theory and propose novel distributed algorithms which calculate, for
purposes of either network management/monitoring, an overlay with high numbers of inter-layer
links, so as to the communication among different layers not to break easily (accidentally or due
to malicious attacks).

The main contributions of the present dissertation are:

• It is introduced the problem of calculating (minimum) connected node dominating sets
(MCDS) in multilayer networks which has not been considered in the literature so far.
In this context, we prove that decomposition-based and aggregation-based approaches
for dominating set calculation in multilayer networks will not work and highlight the
significance of assessing and exploiting each node’s intra- and inter-layer links in order to
be considered as candidate members of DS. Thus, we propose a family of centrality measures
able to rank a multilayer node, with respect to its “strategic” position in the multilayer
network. We also develop distributed algorithms for calculating the connected dominating
set which exhibit superior performance compared to other widely used algorithms.

• It is introduced the novel problem of finding (minimum) connected edge dominating sets
(MCEDS) in multilayer networks. We prove that the problem of finding the MCEDS in
a multilayer network is NP-hard and we propose a centrality measure-based technique
that provides to multilayer network nodes awareness about the significance of the edges
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that are adjacent to them. Moreover, we develop distributed algorithms that heuristically
calculate the MCEDS.

• It is proposed a new trajectory prediction scheme for use in the Vehicle Ad hoc Network
environment, which builds in a purely distributed fashion a rich summary of a vehicles’
roaming history that subsequently is used to provide online accurate predictions. We
compare the proposed method against several, model independent and highly accurate
prediction algorithms and the results affirm its superior performance.
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Σύνοψις και

Συνεισφορές

Σ
το πλαίσιο της παρούσας Διδακτορικής διατριβής εστιάζουμε στα Στρατιωτικά πολυεπίπεδα

ασύρματα δίκτυα και επενδύουμε στην τεχνολογία των ad hoc δικτύων προκειμένου να βελ-
τιώσουμε την απόδοση τους. Οραματιζόμαστε τα Τακτικά ασύρματα δίκτυα να απαρτίζονται από

στρώματα ad hoc δικτύων με κινούμενους κόμβους, τα οποία θα είναι αδιαφανώς συνδεδεμένα
μεταξύ τους ως μέρος ενός απρόσκοπτου υπερδικτύου το οποίο θα επιτρέπει την άμεση ροή πλη-

ροφοριών μεταξύ των κόμβων του.

Για την υλοποίηση αυτού του οράματος αρχικά βασιζόμαστε στη θεωρία των Connected node
Dominating Sets (CDS) και προτείνουμε καινοτόμους αλγόριθμους οι οποίοι επιτυγχάνουν κατα-
νεμημένα αποτελεσματική σύνδεση των ανωτέρω πολυεπίπεδων ad hoc δικτύων ώστε να μειωθεί
η καθυστέρηση τους (latency) , να βελτιωθεί η επεκτασιμότητά τους (scalability) και να αυξηθεί
η διάρκεια της ζωής τους. Στη συνέχεια εξετάζουμε το πρόβλημα της αποτελεσματικής και ταυ-

τόχρονα κατανεμημένης παρακολουθησης της διακίνησης των δεδομένων εντός του πολυεπίπεδου

ad hoc δικτύου. ΄Ενα δύσκολο πρόβλημα, ιδιαίτερα αν αυτό πρόκειται να επιλυθεί μέσω της χρήσης
κατανεμημένων αλγορίθμων, λόγω των προβλημάτων συντονισμού που έχουν να κάνουν με το

πολυεπίπεδο περιβάλλον καθώς δύνανται να οδηγήσουν είτε σε απώλεια επικοινωνίας μεταξύ των

επιπέδων του δικτύου είτε σε υπερβολική εξάρτηση αυτού από ένα συγκεκριμένο επίπεδό του. Για

την επίλυση του συγκεκριμένου προβλήματος βασιστήκαμε στη θεωρία των Connected edge Dom-
inating Sets (CEDS) και προτείνουμε νέους κατανεμημένους αλγορίθμους οι οποίοι υπολογίζουν
για σκοπούς διαχείρισης ή/και παρακολούθησης του πολυεπίπεδου δικτύου μία επικάλυψη αυτού

η οποία εμπεριέχει μεγάλο αριθμό από διασυνδέσεις μεταξύ των επιπέδων του δικτύου έτσι ώστε

η επικοινωνία μεταξύ αυτών να μη διακόπτεται εύκολα (είτε κατά λάθος είτε λόγω κακόβουλων

επιθέσεων).

Οι κύριες συνεισφορές της παρούσας Διδακτορικής διατριβής είναι:

• Παρουσιάζεται το πρόβλημα του υπολογισμού του (minimum) Connected node Dominating
Set (CDS) σε πολυεπίπεδα δίκτυα το οποίο δεν έχει εξεταστεί μέχρι στιγμής στη βιβλιογραφία.
Στο πλαίσιο αυτό, αποδεικνύουμε ότι, οι προσεγγίσεις είτε για επίλυση του συγκεκριμένου

προβλήματος με βάση την αποσύνθεση του πολυεπίπεδου δικτύου στα επιμέρους επιπέδα

του είτε για συσσωμάτωση των επιπέδων του ώστε αυτά επί της ουσίας να μην υφίστανται

δε θα φέρουν το επιθυμητό αποτέλεσμα και τονίζουμε την ανάγκη για αξιολόγηση αλλά και

περαιτέρω εκμετάλλευση των διασυνδέσεων που διαθέτουν οι κόμβοι του δικτύου ώστε αυτοί

να θεωρηθούν ως υποψήφια μέλη του DS. Για το λόγο αυτό, προτείνουμε μία ομάδα από μέτρα
για τη μέτρηση της σημαντικότητας του κάθε κόμβου εντός του πολυεπίπεδου δικτύου ώστε

να προσδιοριστεί η στρατηγική θέση καθενός από αυτούς. Επίσης, αναπτύσουμε αλγορίθμους
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οι οποίοι υπολογίζουν κατανεμημένα το επιζητούμενο DS και παρουσιάζουν ανώτερη απόδοση
σε σύγκριση με άλλους ευρέως χρησιμοποιούμενους αλγόριθμους.

• Παρουσιάζεται επίσης, το πρόβλημα της εύρεσης (minimum) Connected edge Dominating
Set (CEDS) σε πολυεπίπεδα δίκτυα. Αποδεικνύουμε ότι, το συγκεκριμένο πρόβλημα είναι NP-
hard και προτείνουμε μία τεχνική η οποία προσδίδει στους κόμβους του πολυεπίπεδου δικτύου
αντίληψη αναφορικά με τη σπουδαιότητα των ακμών που ακουμπούν σε πάνω σε αυτούς.

Επιπρόσθετα, αναπτύσουμε νέους ευριστικούς αλγόριθμους οι υπολογίζουν κατανεμημένα

το CEDS

• Προτείνεται ένας καινοτόμος αλγόριθμος πρόβλεψης για χρήση στο περιβάλλον των Vehicle
Ad hoc Networks (VANETs) , ο οποίος με καθαρά κατανεμημένο τρόπο και λαμβάνοντας
υπόψη του την ιστορία κίνησης ενός οχήματος πραγματοποιεί online ακριβείς πρόβλεψεις
αναφορικά με τη μελλοντική τροχιά του υπό εξέταση οχήματος. Συγκρίνουμε την προτει-

νόμενη μέθοδο με άλλους υψηλής ακρίβειας αλγόριθμους πρόβλεψης και τα αποτελέσματα

επιβεβαιώνουν την ανωτερότητα του αλγορίθμου μας.
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1
THE EVOLVING CONDUCT OF WAR

1.1 Introduction

While the concept of war remains constant in history; the conduct of war is constantly

experiencing change in response to new concepts, technologies, and capabilities. How

modern armies adapt to such changes determines their alertness to confront future

operational challenges and threats. Applied immediately, technological innovations can provide

battlefield advantage, particularly when they facilitate or complement new ways to conduct war.

According to General (ret) Eric K. Shinseki, the head of the US Armed Forces, perhaps the

world’s most experienced and combat ready army, all future military operations will be carried

out by medium-sized forces, but with the flexibility of light forces and same efficacy and survival

capacity as that of heavy forces. The implementation of this vision will be made possible through

the use of an integrated information management system (see Figure 1.1), which will provide at

all levels of governance a catalytic leadership in decision-making so that all kinds of operations

be successfully executed. The information revolution [121], with the promise of accelerating

breakthroughs for surveilling, understanding, and communicating is expected to create a base of

knowledge for military planning and execution unprecedented in scope, volume, accuracy, and

timeliness.

Network Centric Warfare (NCW), Network Centric Defence (NCD) and Network Enabled

Capability (NEC) [131] describe current military initiatives to maximise the benefit of advanced

technologies in information sharing. By connecting multiple communicating platforms to present

information to users on a need to know basis, military capabilities can be increased dramatically.

Fundamental to this is that everything in a military NEC environment will be connected together

as part of a seamless network, allowing information from more sources to flow faster, be analysed

1
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FIGURE 1.1. A schematic representation of an integrated information manage-
ment system (taken from https://www.thalesgroup.com/en/worldwide/news/

smart-connectivity-airborne-operations).

more effectively and be acted upon sooner. Fully realised, NEC offers the following benefits to

military operations:

• Enhanced combat identification

• Assured communications interoperability

• Improved shared situational awareness

• Enhanced multi-national command, control and coordination

• Reduced risk of fratricide and collateral death and damage

• Improved mutual support

• Improved combat effectiveness

Towards the implementation of the NEC the ad hoc network technology plays a crucial

role as this networking paradigm provides the necessary mobility [Mobile Ad hoc NETworks

(MANETs), Vehicle Ad hoc NETworks (VANETs), Flying Ad hoc NETworks (FANETs)] required

by the lower echelons of a military force. Likely, military wireless multilayer networks will be

a heterogeneous network of networks, an amalgam of differing networks including Internet

Protocol (IP), Time Division Multiplexing (TDM) and other legacy or emerging technologies. We

acknowledge that there is a strong need for creating seamless links between the communicating

platforms which will ultimately permit cross layer connectivity in the field and at the command

level. Loss of seamless communications could jeopartize overall situational awareness and thus

preclude fulfilment of the operational objectives. Moreover, we need the communicating platforms

to be connected in an efficient way so as to e.g., reduce the number of redundant messages in the

multilayer network, improve network scalability, reduce network latency, etc.

2
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1.2. MOTIVATION

1.2 Motivation

The present dissertation focuses on the tactical wireless ad hoc networks which we envision

working as a seamless multilayer ad hoc network. Specifically, it poses and answers the following

main questions and challenges:

• How can we efficiently connect a multilayer ad hoc network ?

• How can we efficiently monitor the performance of that multilayer ad hoc network ?

• Is it possible to accomplish the aforementioned objectives based solely on local knowledge

of the network topology and thus effectively deal with rapidly changing networks or

incomplete knowledge of a network’s connections ?

In the context of the present dissertation we investigate ways to constructing in a distributed

fashion structures for improving connectivity and monitoring performance of a military multilayer

network with the intent to support the NEC. Even though traditional graph-theoretic concepts [39,

143] can be used for these problems, network science concepts such as centralities can also provide

essential tools for the management of military ad hoc networks [55, 79, 80], and especially in our

case, they can help identify efficient cross-layer dominators.

1.3 Contribution

The present dissertation makes the following contributions:

In Chapter 2 we set the conceptual framework of a military multilayer tactical network;

i.e, having tiers of subnets built up with waveforms (a wireless multiple access radio frequency

technology) and present some emerging technologies that can be used to homogenize these het-

erogenous subnets and thus enable cross layer connectivity. Then we argue on the importance of

topology control in a multilayer network, we provide some graph theoretic approaches for the

implementation of this task; the construction of a backbone of nodes of the multilayer network

and discuss which approach fits better in the military environment. Finally, we present some

well known centrality measures that are widely used to quantify the importance of a network

node and thus be used in the backbone.

In Chapter 3 we introduce the problem of calculating Minimum Connected node Dominating

Set (MCDS) in multilayer networks which has not been considered in the literature so far. In this

context, we prove that decomposition-based and aggregation-based approaches for Dominating

Set (DS) calculation in multilayer networks will not work and highlight the significance of

assessing and exploiting each node’s intra- and inter-layer links in order to be considered as

candidate members of DS. Finding the MCDS in the centralized setting (i.e., having knowledge

3
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of the complete network topology) belongs to the class of NP-complete problems; it is understood

that efficient (heuristic) distributed solutions to the same problem – which are those preferred

for ad hoc networks – are much harder to devise.

In order to solve the problem we propose a family of centrality measures able to rank a

multilayer node, with respect to its “strategic” position in the multilayer network. We also develop

a distributed algorithm for calculating the connected dominating set and experimentally eval-

uate the proposed methods for constructing connected dominating set against a robust competitor.

In Chapter 4 we investigate the issue of calculating energy-aware MCDS based backbones

for multilayer networks. It generalizes the problem defined in the previous chapter. We highlight

that assigning different weights on intra-layer versus inter-layer links can not help transform the

problem into that of dealing with the calculation of a weighted dominating set of the multilayer

network, because there is no algorithmic method yet for the determination of the relative weights

so as to produce an efficient backbone for multilayer networks.

In order to solve the problem we propose a centrality measure for identifying nodes with high

residual energy and central position within the multilayer network. Based on that centrality mea-

sure we develop an energy aware backbone construction algorithm; we analyze its performance

both from a computational/communication complexity perspective and an experimentation-based

perspective and finally we exhaustively compare it against relevant and baseline competitors,

because there is no prior work on multilayer networks.

In Chapter 5 we introduce the novel problem of finding a (minimum) connected edge domi-

nating set (MCEDS) in multilayer networks. The problem of distributed computation of a resilient

network overlay for communication link monitoring in single layer ad hoc networks has been

studied in the past. However, in the context of multilayer ad hoc networks, this problem is

significantly harder to address, especially using distributed algorithms, because of coordination

failures which can lead to loss of communication or over-dependence on a specific layer. In this

context, we formulated the problem with the additional constrain of including many inter-layer

links into the EDS. Designing networks with high numbers of inter-layer links immunizes the

network to (possibly correlated) failures in any particular layer, allowing the design of resilient

network overlays for purposes of either network management/monitoring or data forwarding, in

the sense that the communication among different layers can not break easily (accidentally or

due to malicious attacks).

We prove that the problem of finding the MCEDS in a multilayer network is NP-hard. In

order to solve it we propose a centrality measure-based technique that provides to networks

nodes awareness about the significance of the edges that are adjacent to them. Then we develop

three distributed algorithms that heuristically calculate the MCEDS and we evaluate their

performance.

4



1.3. CONTRIBUTION

In Chapter 6 we investigate the problem of constructing energy aware MCEDS for multilayer

networks. Communication and monitoring are both energy-intensive activities. The resulting

energy depletion may exhaust the batteries of network elements, disconnecting the overlay and/or

resulting in the loss of monitoring capabilities. Thus, the distribution of energy among elements

chosen in the overlay must be such that there are fewer low energy elements.

In that context, we propose an energy-aware centrality measure so as to provide to network

nodes awareness about the energy status and the connectiveness of the edges that are adjacent

to them. Then we develop three distributed algorithms to solve the problem and we evaluate

their performance.

In Chapter 7 we further investigate how to improve the performance of a military network.

To elaborate, we focus on the vehicular environment, a fundamental ingredient of the modern

battlefield, and we invest on the VANETs technology with the intent to improving robustness

regarding the overarching multilayer network. In the context of a military multilayer network

mobility is considered an inherent attribute of the participating hosts which makes backbone con-

struction a difficult if not impossible task. In such demanding environment trajectory forecasting

of mobile hosts is a viable option to improving routing protocols, traffic management, connectivity

robustness, etc.

VANETs, are spontaneous, flexible wireless networks that are able to support the associated

applications in dynamic, multihop topologies. However, the relatively high speed of the moving

vehicles degrades link quality, causes fast fading, short connectivity and high frequency hand-offs.

In order to improve the performance of a V ANET system we propose a new trajectory prediction

scheme which builds in a purely distributed fashion a rich summary of a vehicle’s roaming history

that subsequently is used to provide accurate predictions. We compare the proposed method

against several, model independent and highly accurate prediction algorithms and the results

affirm its superior performance.

In Chapter 8 we investigate the problem of scaling down the ad hoc networks. Providing

a hierarchical organization to ad hoc networks has been identified as a viable and efficient

option for this problem in the literature. However, despite the fact that a really large number of

algorithms have been proposed during the last decade for dealing with this problem the proposal

and study of protocols which exhibit low message complexity, fast convergence, incremental

backbone maintenance, resilience to hub node failures, connectivity preservation, and backbone

stability is still in quest.

In that context we select some baseline algorithms from different graph-theoretic classes,

connected dominating set, independent sets, which exhibit a diversification in the degree of local-

ization in this problem solving and evaluate their performance. We develop a rich comparison

5
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framework for the ad hoc network clustering protocols by employing three families of performance

measures, namely for protocol cost, for backbone description and for robustness. Further, we

propose an improvement to an existing algorithm appropriate for cluster rebuilding processes in

case of node failure.

Finally, in Chapter 9 we conclude the work conducted in the context of this dissertation; i.e.,

integrate and synthesize the various issues raised in the preceding chapters, whilst reflecting the

introductory dissertation statements and objectives. Moreover, we provide direction and areas for

future research.
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2
INTRODUCTION TO TECHNOLOGY AND SCIENCE

2.1 Developments in Military Communications Systems

Tactical wireless networks have tiers of subnets [109] (islands of MANETs as in Figure 2.1).

These subnets are constructed with waveforms (a waveform is a wireless multiple access

radio frequency technology). Contrary to civilian wireless networks, tactical wireless

networks nodes can be all mobile; there is no fixed infrastructure, and the end-users are part of

the infrastructure.

FIGURE 2.1. A detailed example of a military multilayer network structure (taken
from [109]).

7
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The task of interconnecting the subnets so as to create a homogeneous multilayer tactical

network is one the most challenging and difficult problems to solve towards the implementation

of the NEC. Thankfully, advances in technology are helping to break down the barriers to

telecommunications interoperability that have long stymied military planners. Software Defined

Radio (SDR) [117] technology is likely to revolutionize the integration of multiple waveforms

and enable interoperability with legacy systems and communications with entities utilizing

different standards. Further, SDR will enable multiband and cross-band operation. In the context

of a military multilayer network an SDR-capable user could participate in more than one

networks, permitting information exchange between heterogeneous networks. The ability for a

communication device to operate in multiple bands is critical to supporting extant waveforms

and providing seamless connectivity.

Maybe the most favorable attribute of military SDRs, which differentiates them from previous

technologies, is the ability to change their functionality online by downloading another waveform

application [97]. New waveforms may (on a fundamental level) incorporate the modulation

scheme, communication protocols, cryptographic algorithms and possibly some network level

applications including cross-banding and gateways. This expands their functionality and enables

new communication capabilities to be present right away without, in many cases, making any

changes to the existing communication hardware.

FIGURE 2.2. Improved connectivity through the use of SDR technology (taken from
https://asc.army.mil/web/news-alt-jfm17-reuse-refine-resolve).

Further, the increase in the number of systems utilizing the wireless medium within a

military multilayer network makes the problem of effective frequency management of significant

importance. In this context, given the restricted capacity of the wireless networks [52], the need

for detailed frequency management involving a large number of systems is envisaged. In addition,

it would be profoundly favorable for the network to be able to perform frequency management

8
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autonomously. Whilst this represents a major challenge, the solution of this particular problem,

using Cognitive Radio (CR) techniques [4], would provide incredible advantage in the effective

management of combat radio systems. CR is a new communication paradigm that senses, and is

aware of, its operational environment and can dynamically and autonomously adjust its radio

operating parameters accordingly. This approach includes wireless links from Unmanned Aerial

Vehicle (UAV), satellites, and wired connections that can utilize a variety of anti-interference and

stealth techniques to compensate for hostile environments. This is a promising ongoing area of

research towards the implementation of autonomous, adaptive radio communications networks.

FIGURE 2.3. A cognitive-radio system could help gather a variety of different wireless
links into a united and intelligent tactical wireless network (taken from https:

//www.mwrf.com/systems/bringing-cognition-tactical-networks).

Finally, establishing secure sharing of information and associated trust relationships across

the tactical wireless network is also a major issue. In near future, existing legacy systems that

make extensive use of cryptographic devices operating at the link layer will be upgraded so

as to be able to work at the network layer, and thus support secure operation across IP-based

networks [138]. Programmable architectures that will be able to support flexible operation using

multiple cryptographic algorithms and interface types is also envisioned. All in all, the existing

and the emerging advances in communication technology have set the ground for seamless

information sharing among the actors of a multilayer tactical wireless network.

2.2 Topology Control in Tactical Networks

Once a multilayer network is deployed the communication links among its nodes comprise the

topology of the network. Topology control is of particular interest in a multilayer network as it

can extend its lifetime while simultaneously preserve other important characteristics such as

9
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its connectivity and coverage. Topology control is the reorganization and management of node

parameters and modes of operation from time to time to modify the topology of the network [29].

2.2.1 Virtual backbone construction

In the framework of the ad hoc networks a common practice for topology control is the construction

of hierarchical topologies as it is beneficial to improving network scalability and efficiency. In order

to build such topologies most broadcasting algorithms use the concept of the Virtual Backbone

(VBN). A VBN is a subset of nodes that works as a communication layer, and only the nodes in

the communication layer transmit data, significantly reducing the transmission of redundant

information, simplifying the topology of the network, saving the energy for information gathering

and filtering, routing and forwarding information required. Among the most-researched methods

for VBN formation in wireless ad hoc networks are those based on clustering [142, 145] and those

based on dominating sets [54, 104, 143].

2.2.2 Cluster-based hierarchical topologies

Under a cluster structure, network nodes are partitioned into a number of small groups called

clusters. In each cluster nodes may be assigned a different status or role, such as cluster head

(CH), cluster gateway (CG), or cluster member (CM) (see Figure 2.4).

Cluster member 
(ordinary node)

Clusterhead

Cluster gateway

Cluster

FIGURE 2.4. Cluster structure illustration.

A CH serves as a local coordinator for its cluster, performing intra-cluster transmission

management and data forwarding. A CG is a node with inter-cluster links, so it can access

neighboring clusters and forward information between clusters. In cases where overlapping

clusters exist a CH may have dual duties and forward information to adjacent CHs. A CM is a

non-CH node without any inter-cluster links. A clustered network structure results in a two-tier

10
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hierarchy in which CHs form the higher tier while CMs form the lower tier. The benefits of a

cluster-based approach to building a hierarchical topology in a multilayer network are:

• Facilitates the spatial reuse of resources to increase the system capacity.

• Improves network scalability and efficiency through the construction of a virtual backbone

between the set of CHs and CGs.

• Improves network robustness as information processed and stored by each mobile node is

greatly reduced as it concerns only the cluster it belongs.

Clustering reduces channel contention and packet collisions, resulting in better network

throughput under high load. However, a cluster-based MANET has its side effects and drawbacks.

To elaborate:

• Cluster formation in a dynamically changing scenario is an open issue as most clustering

algorithms assume some degree of node stationarity when cluster formation is in progress.

• To maintain a cluster structure in a dynamically changing scenario often requires fre-

quent information exchange between mobile node pairs which may consume considerable

bandwidth and drain mobile nodes’ energy quickly.

• Some clustering schemes may cause the cluster structure to be completely rebuilt over the

whole network when some local events take place.

All in all, clustering can be problematic for modern battlefields because the participating

units are highly mobile and thus frequent re-clustering might be necessary; this will jeopardize

the communication ability of the entities and also put under question the robustness of the

multilayer network. Even the approaches for clustering VANETs [83, 103] that take mobility

into account will not work in a battlefield, because these approaches exploit the road network

topology which is usually not present in a battlefield.

2.2.3 DS-based hierarchical topologies

The drawbacks of the cluster-based topology construction approach constitute clustering a precar-

ious option in the dynamic environment of a multilayer military network. On the other hand, the

option that is based on dominating sets for the construction of the VBN provides the required

flexibility so as to be a viable approach. Before commenting on dominating sets we will first

provide some basic definitions from graph theory.

A graph G = (V ,E) is used to represent a wireless network, where V represents the set of all

nodes in the network and E represents the set of all links in the network. For a node u ∈V , id(u)

denotes the unique id for u and d(u) denotes the degree of u. N(u) is the open neighbor set of u,

that is, N(u)= {v|(v,u) ∈ E} and d(u)= |N(u)|. N[u]= N(u)
⋃

{u} is the close neighbor set of u. For

a subset S of V , G[S] is a subgraph of G induced by S. N(S) =
⋃

u∈S N(u), and N[S] =
⋃

u∈S N[u].

11
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Definition 2.1. The maximum node degree of the network is ∆, where ∆ = max{d(u)|u ∈V }.

Definition 2.2. A graph G is said to be strongly connected if for any pair of nodes u,v ∈V, there

exists a (directed) path between them. Likewise, a subset S of V is called a strongly connected set

if G[S] is strongly connected.

Definition 2.3. An Independent Set (IS) is a subset S of V such that there is no edge in G[S] (see

Figure 2.5 LEFT).

Definition 2.4. A Maximal Independent Set (MIS) is an IS such that adding any node not in the

set breaks the independence property of the set (see Figure 2.5 RIGHT). Thus, any node not in the

MIS must be adjacent to some node in the set.

FIGURE 2.5. (LEFT) Nodes in red comprise an independent node dominating set.
(RIGHT) Nodes in red comprise a maximal independent node dominating set.

Definition 2.5. A DS of a network (G,E) is any subset of G with the property that any node v

of G is either a member of the DS (then, v is called a dominator) or v is one hop away from a

dominator (then, v is called a dominatee) (see Figure 2.6). Thus, every MIS is a DS. However, since

nodes in a DS may be adjacent to each other, not every DS is an MIS. Finding a minimum DS

belongs to the class of NP-complete problems [47].

FIGURE 2.6. Nodes in red comprise a dominating set.

Definition 2.6. A Connected node Dominating Set (CDS) C of a network (G,E) is a DS of G,

where G[C] is connected (see Figure 2.7 LEFT)).

Definition 2.7. A MCDS is a CDS with minimum cardinality (see Figure 2.7 RIGHT)). Finding

the MCDS is also an NP-complete problem [47].

12
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FIGURE 2.7. (LEFT) Nodes in red comprise a connected node dominating set.
(RIGHT) Nodes in red comprise a minimum connected node dominating set.

We emphasize that there is no previous work on calculating connected dominating sets in

multilayer networks. Nevertheless, the topic is relevant to a number of areas which we briefly

discuss here. The wireless ad hoc networks community has extensively investigated the topic of

distributed CDS algorithms for (single layer) ad hoc networks. Some of the proposed algorithms

are centralized and yield a small CDS under the assumption that the complete network topology

is known. However, such an assumption is unrealistic for the dynamic environment of a military

multilayer network. The majority of the proposed CDS-related algorithms are decentralized; i.e.,

the decision process is distributed and requires only a constant number of communication rounds,

making them an attractive option for constructing a VBN destined for the military multilayer

environment. Nice surveys of recent results on this topic are presented in [104, 143]. The main

focus of these works is to produce a small connected dominating set under various constraints,

such as type (unidirectional/bidirectional) of links, mobility management, backbone diameter

length, energy budget, different transmission ranges, interference, and so on.

Research on multilayer complex networks [16, 86] (generalization of multi-plex, or interde-

pendent networks) is relatively new and spans directions such as formation mechanisms [111],

centralities, communities [62], diffusion processes [106]. In this dissertation we are striving for

an improved topology management of a military multilayer network by constructing robust CDSs

under the concept of influential spreaders. Influential spreaders in a complex network are those

nodes which under a specific spreading model (e.g., Susceptible-Infectious-Recovered (SIR) 1,

Susceptible-Infectious-Susceptible (SIS) 2) are able to spread the “infection” in a large part of

the network. After the seminal work of [71], measures such as k-shell [71], PCI [13] and others

have been proposed to identify influential spreaders over single-layer complex networks. There is

some work on positive influence dominating sets in single layer social networks [130]. Finally,

our work [12] investigated the issue of detecting influential spreaders for multilayer complex

networks using concepts similar to those presented in this dissertation.

1An SIR model is an epidemiological model that computes the theoretical number of people infected with a
contagious illness in a closed population over time. The name of this class of models derives from the fact that they
involve coupled equations relating the number of susceptible people S(t), number of people infected I(t), and number
of people who have recovered R(t).

2SIS is very similar to SIR. SIS offers no immunization for the network nodes, i.e., the recovered state is excluded.
SIS assumes that agents (the nodes) can only exist in the two remaining discrete states: susceptible or healthy (S) and
infected (I).
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Next, we will provide some basic information about centrality measures which describe the

importance of a vertex in a networked system using some set of criteria, because they form the

basis for defining influential nodes.

2.3 Centrality Measures

The importance or prominence of a node is synonymous with the strategic location of the node

within the network. This prominence is described by numerous centrality measures [65]. The

most noteworthy and substantively interesting centrality metrics are described in the sequel:

• Degree centrality is loosely defined as the number of one-hop neighbors of a node [132]. For

a network with n nodes, the normalized degree centrality of a node ai is:

DegCai =
degree (ai)

n−1

Intuitively, a node is prominent if it has many direct links to other nodes in the network;

thus play a crucial role in the functioning of the network, e.g., robustness, when network

nodes fail or malfunction, or for the efficient diffusion of information within the network.

Degree centrality however can be deceiving as it is a local measure. To exemplify, in

Figure 2.9 the red node has a degree = 3 but it is the most prominent node as it connects

three different subgraphs.
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FIGURE 2.8. A degree centrality example. Degree centrality can be deceiving; in this
particular example it fails to show how prominent is the red node.

• Eigenvector centrality quantifies the influence of a node in a network [132]. It is based on

the spectral properties of the matrix that describes the relationships among the nodes. A

high eigenvector value means that a node is connected to many nodes who themselves have

high eigenvector values too (see Figure 2.9).
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Let A = (ai, j) be the adjacency matrix of a graph. The eigenvector centrality xi of node i is:

xi = 1
λ

∑
k

ak,i xk

where λ 6= 0 is a constant. In matrix form we have:

λx = xA

This type of equation is well known and solved by the eigenvalues and eigenvectors of A.

From the set of different eigenvectors only one seems to be an appropriate solution that can

serve as a centrality measure. As A is the adjacency-matrix of an undirected (connected)

graph, A is nonnegative and due to the theorem of Perron–Frobenius [95], there exists an

eigenvector of the maximal eigenvalue with only nonnegative (positive) entries. Google’s

PageRank [91] and Katz centrality [67] are variants of the eigenvector centrality.
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FIGURE 2.9. An eigenvector centrality example. Nodes are awarded high scores if they
are connected to many nodes who themselves have high scores.

• Betweenness centrality measures the frequencies of nodes in the shortest paths between

indirectly connected nodes and is formally defined as the fraction of the shortest paths

between any pair of nodes that pass through a node [132] (see Figure 2.10).

0 0.33 0.330.60 00.53 0.53

FIGURE 2.10. A betweeness centrality example. Nodes towards the center of the graph
are more prominent because the fraction of the shortest paths between any pair of
nodes that passes through them is larger.

Mathematically, let ni
s,t be the number of geodesic paths from s to t that pass through i

and let ns,t be the total number of geodesic paths from s to t. Recall that a geodesic path
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is not necessarily unique and the geodesic paths between a pair of vertices need not be

node-independent, meaning they may pass through some of the same vertices. Then the

betweenness centrality of vertex i is:

bi =
∑
s,t

wi
s,t =

∑
s,t

ni
s,t

ns,t

It can be used, for instance, in message-carrying applications where we need to forward

a packet to a node that is promising to deliver it with success and/or faster to its final

destination.

• Closeness centrality quantifies the efficiency of information propagation from one node to

all the others and gives an estimate of how long it will take information to spread from a

given node to the rest of the network nodes [132]. Closeness centrality measures the mean

distance from a node to other nodes. The distance can be measured in number of hops,

delays, and so on. Recall that a geodesic path is a shortest path through a network between

two nodes.

Suppose di, j is the length of a geodesic path from i to j, meaning the number of edges along

the path. Then, for a network with n nodes, the normalized geodesic distance for node i is:

l i =
[∑n

j 6=i di, j

n−1

]−1

This quantity takes large values for nodes that are separated from others by only a short

geodesic distance on average (see Figure 2.11). Evidently, this measure could be used in

applications where, for instance, we need to elect a single leader node to propagate alert

messages.

0.4 0.57 0.570.67 0.4

FIGURE 2.11. A closeness centrality example. Nodes towards the center of the graph
are more prominent because, on the average, their geodesic distance from the other
nodes in the graph is shorter.

• K-Core centrality is a measure that can help identify tightly interlinked groups within a

network. A k-core is a maximal group of entities, all of which are connected to at least k

other entities in the group (see Figure 2.12). It has been widely used for the identification

of influential spreaders in complex networks.
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Corenness 2

Corenness 1Corenness 3

FIGURE 2.12. A K-core centrality example.

• µ-Power Community Index (µ-PCI) characterizes a node for the density in connections of

both itself and its µ-hop neighbors [38]. The PCI index of a node v is equal to k, such that

there are up to k nodes in the 1-hop neighborhood of v with degree greater than or equal to

k, and the rest of the nodes in that 1-hop neighborhood have a degree less than or equal

to k (see Figure 2.13). It has been a subject of intensive study in the present dissertation

as it is an effective; low computation cost; and efficient method for detecting potent nodes

that can communicate with a large subset of network nodes in large complex networked

systems.
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FIGURE 2.13. A PCI centrality example. The red node has a PCI = 4 as it is connected
to 4 nodes and each one of them has a degree = 4.

Besides these representatives of the basic concepts of centrality, a plethora of other centrali-

ties has been defined over the years (see, e.g., [17, 46, 73, 102]) which, e.g., enable the integration

of edge weights or of directional connections or are suitable for specific applications and net-

work types. Usually, these centralities represent modifications or enhancements of the already

discussed centralities and thus are not elaborated in more detail here. The interested reader

is referred to [1, 35, 114] and references therein to have a more concrete view about centrality

measures.

Centrality concepts have been exploited widely in ad hoc networking for purposes of coop-

erative caching [38], service deployments [80], access control [40], security [77], routing [76], in

many areas of delay tolerant networking [81], and so on.

Multilayer networks [16] are a particularly hot research area of network science. In [12]

several centrality measures were developed for helping in the identification of influential spread-
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ers [71] in multilayer networks. Multilayer network literature has not been exploited widely

yet in the area of ad hoc networking even though several of its advances can be applied there.

Calculating connected dominating sets with the purpose of operating as backbones in wire-

less multilayer ad hoc networks was studied so far only in [92]; it was proved there that some

peculiarities [61, 124] of the problem make existing solutions either not appropriate or not

efficient.
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3
BACKBONE FORMATION IN MILITARY MULTILAYER AD HOC

NETWORKS USING COMPLEX NETWORK CONCEPTS

3.1 Introduction

Tactical ad hoc networks encompass some unique characteristics that differentiate them in

terms of requirements, expectations, needs and constrains from the respective commercial.

Those characteristics are related to dynamic topology, scarcity of bandwidth and excessive

delay. Tactical wireless networks built with the Joint Tactical Radio System (JTRS) [69] in mind

have layers of subnets. There is the Soldier Radio Waveform (SRW) tier. It can have two subtiers,

one for soldier-to-soldier communications and one for networking sensors. Above that, there is the

Wideband Networking Waveform (WNW) tier, which has two subtiers; one forms local subnets for

vehicle-to vehicle communications, and the other is for global connectivity, to generate a single

subnet over the entire theater. There is also the Joint Airborne Network - Tactical Edge (JAN-TE)

stub network that supports the tactical airborne domain of weapons platforms.

All in all, we consider these “island” subnetworks as being the layers of a single, large

network, which we call a multilayer communication network. Abstracting all the specifics, we

illustrate such a multilayer network in Figure 3.1 composed by a subnetwork (layer) of soldiers, a

subnetwork (layer) of helicopters and a subnetwork (layer) of drones.

Fast, information spreading across the whole network is vital to many battle and intelligence

operations. Since each layer is an ad hoc wireless network, the goal is to construct a VBN

Related publication [C3]: Dimitrios Papakostas, Pavlos Basaras, Dimitrios Katsaros, Leandros Tassiulas. “Back-
bone Formation in Military Multilayer Ad Hoc Networks Using Complex Network Concepts”, Proceedings of the
35th IEEE Military Communications Conference (MILCOM), Baltimore, Maryland, USA, November 1-3, 2016.
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FIGURE 3.1. Abstraction of a multilayer ad hoc network (for the purposes of illustration,
physical obstacles have been removed, and the entities have been projected into
the two dimensional space): The first layer is comprised of soldiers, the second
of helicopters, and the third of drones. Solid (green/red/blue) color links denote
communication links among entities of the same layer (soldiers/helicopters/drones).
Dashed, purple links denote links among entities belonging to different layers.

connecting all these layers in such a way that efficient and effective information dissemination

can take place. According to § 2.2.3 backbones based on connected dominating sets [39] are a fine

solution which combines flexibility (considerations for backbone diameter, mobility management,

energy efficiency, different transmission ranges, interference, etc) and incorporation of even

social-cognitive techniques [38].

Notably, the problem of constructing connected dominating set-based backbone for multilayer

ad hoc networks has not been considered in the literature so far, mainly because there is no

supporting technology. However, the recent advances in the Micro Electro-Mechanical Systems

(MEMS) technology provide the framework in which some state of the art wireless communication

technologies such as Multiple-Input and Multiple-Output (MIMO), SDR and CR make the

homogenization of a multilayer ad hoc a reality. In this context, the present chapter makes the

following contributions:
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• It introduces the problem of calculating minimum connected dominating sets in multilayer

networks.

• It defines measures of node importance which help to identify those nodes “strategically”

positioned in the multilayer network that will act as dominators.

• It develops a distributed algorithm for calculating the connected dominating set.

• It experimentally evaluates the proposed method for constructing connected dominating

set against a robust competitor.

The rest of this chapter is organized as follows: section 3.2 provides background information,

it explains why earlier methods for dominating set calculation can not work, and formally

defines the investigated problem; section 3.3 presents the proposed measures and the distributed

algorithm for dominating set construction; section 3.4 evaluates the performance of the proposed

algorithm, and section 3.5 concludes the chapter.

3.2 Backbone formation for multilayer ad hoc networks

Before we formulate the problem we will first make some comments on Figure 3.1. Using

the Definitions from §2.2.3, it is easy to deduce that the MCDS for the drone-layer includes

only the nodes {D4,D6}; the respective MCDS for the helicopter-layers includes the nodes

{H4,H5,H7}, and a (there exist more than one) MCDS for the soldier-layer includes the nodes

{S2,S5,S7,S10,S12,S15,S17,S16,S20}. Finding the MCDS of a graph in the centralized setting

(i.e., having knowledge of the complete network topology) belongs to the class of NP-complete

problems [47]; it is understood that efficient (heuristic) distributed solutions to the same problem

– which are those preferred for ad hoc networks – are much harder to devise [143].

Definition 3.1. A multilayer network comprised of n layers is a pair (GML,EML), where GML =
{G i, i = 1, . . . ,n} is a set of networks (G i,E i) as defined earlier, and a set of inter-layer links

EML = {E i, j ⊆G i ×G j; i, j ∈ {1, . . . ,n}, i 6= j}.

In Figure 3.1, G1 = {Si, i = 1, . . . ,24}, G2 = {Hi, i = 1, . . . ,9}, G3 = {Hi, i = 1, . . . ,8}, and EML is

the set of all links denoted by dashed lines, e.g., (S3,D4).

3.2.1 Problem formulation

Suppose that we are given an undirected (links are bidirectional), unweighted (no weights on

links/vertices) network comprised of multiple (i.e., more than one) layers denoted as (GML,EML).

Then, this chapter studies the ML-MCDS problem from a distributed perspective and it also

develops a heuristic approximation to the ML-MCDS problem.
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Definition 3.2 (ML-MCDS problem). Solve the Minimum-Connected Dominating Set for a

multilayer network in a distributed fashion, i.e., determine the set MCDSML comprised of the

minimum number of nodes (belonging to any layer) such as:

(a) Their induced subgraph is connected (with intra- and/or inter-layer links) and the rest of the

nodes (not belonging to MCDSML) are adjacent to at least one node belonging to MCDSML.

(b) The number of dominators in each layer is the minimum one.

(c) Having only knowledge of the k-hop neighborhood around each node. Here, we set k = 2.

Constraint (a) ensures connectivity of the backbone, and (c) enforces a distributed only

approach. Constraint (b) needs some further discussion. We could have simply described it as

“the total number of dominators is the minimum one”. It is obvious that such a formulation does

not imply the one we have used in Definition 3.2, but the reverse is true. Thus we have strived

for a stronger formulation which can alleviate problems arising from multilayer networks when

their relative size (measured in number of nodes) is highly skewed. Therefore, our definition

strives for locating efficient “cross-layer” dominators.

It is easy to prove that our problem is NP-complete [47]. Apparently, solving the same problem

for directed (i.e., unidirectional links) and/or weighted (energy considerations on links) versions

of networks is also very interesting and subject to solutions not unlike the ones proposed here.

Similarly, the problem of stability or incremental maintenance of a discovered ML-CDS (in cases

of attacks to nodes, or due to nodes’ departures/moves) is also very significant [78], but for the

interest of space will not be discussed here.

We admit that we have provided a completely abstract formulation of the problem without

taking into account practical constraints/considerations such as types of military formations,

physical obstacles and so no; these are reflected in an abstract way into the resulting network

topology. Nevertheless, we feel that such considerations will certainly provide optimizations

opportunities worth examining in a separate chapter.

3.2.2 Decomposition-based and aggregation-based approaches for DS
calculation in multilayer networks will not work

A method that calculates (in a centralized or a distributed fashion) a CDS for each layer sepa-

rately – thus applying a decomposition approach – and then trying to connect them, is clearly

a suboptimal solution. This approach is a characteristic case of the problem where we have

calculated an unconnected dominating set of a network and we need to find a set of dominatee

nodes in order to connect the dominator nodes. In this case, as Theorem 3.1 tells us, the number

of nodes that need to be added to the DS in order to become a CDS can be (in the worst case)

equal to two times the size of the DS.
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Theorem 3.1. Any (unconnected) dominating set of size |DS| can be turned into a CDS by adding

2×|DS| additional nodes in the DS in the worst case.

[Sketch of] Proof.

Firstly, we will state a corollary that results immediately from the domination property, and then

we will define the concept of neighboring dominators of a dominator v.

Corollary 3.1. In any dominating set, the closest (in terms of hops) dominator to any dominator

can be found at one, two or three hops away, i.e., at most three hops away.

Definition 3.3. A neighboring dominator u of a dominator v is any dominator which is at most

three hops away from v.

A dominator v can have more than one neighboring dominators, but the exact number depends

on the network topology. Combining Corollary 3.1 and Definition 3.3, we can recognize only three

cases that describe the topology between a dominator and its neighboring dominators:

C1 A dominator has at least one neighboring dominator one hop away (dominator S1 – and S7

of course – in Figure 3.2).

C2 A dominator has at least one neighboring dominator two hops away, and none of the rest

dominators in one hop distance away (dominator S17 in Figure 3.2).

C3 A dominator has at least one neighboring dominator three hops away, and none of the rest

dominators in one or two hops distance away (dominators S10 and S14 in Figure 3.2).

S1 S2 S3 S4 S5

S6 S7 S8 S9 S10

S11 S12 S13 S14

S20

S15

S16 S17 S18 S19

FIGURE 3.2. A dominating set (composed of blue nodes) which exhibits all possible
relative locations of neighboring dominators.
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If [C1] holds for each and every dominator, the DS is a CDS. If [C2] holds for some dominator

v, then we need to include one more dominatee into the DS in order to connect v to its nearer

neighboring dominator. Finally, if [C3] holds for some dominator v, then we need to include two

more dominatees into the DS in order to connect v to its nearer neighboring dominator. Thus,

in the worst case, for every dominator we need to include two more nodes in the DS in order to

make it a CDS. The worst case occurs for dominating sets as that shown in Figure 3.3. a

S1 S2 S3 S4 S5

S6 S7 S8 S9 S10

S11 S12 S13 S14

S20

S15

S16 S17 S18 S19

FIGURE 3.3. A dominating set (composed of blue nodes) which requires the maximum
number of dominatees that must become dominators in order that the resulting
DS is a CDS.

Even though Theorem 3.1 applies in the worst case only, it is quite possible that the military

formations in battlefields will make topologies such as that of case [C3] to appear quite frequently.

Thus the decomposition-based approaches will create long-and-skinny CDS instead of “bushy”

ones, resulting in large communication latencies.

On the other hand, if we apply an aggregation approach treating all links the same even

though some of them may connect nodes belonging to different layers, will cause other types of

problems; looking again at Figure 3.1 and following an aggregation-based method, some algorithm

might decide to include node S4 into the dominating set, because it is the most connected node in

its neighborhood. However, a wiser decision would be to include node S3 into the dominating set,

because that node connects to node D3 and D4, with the former providing links to the helicopter-

level and the latter being the most connected to its level, thus better facilitating information

dissemination across all layers.

Therefore, neither a decomposition- nor an aggregation-based approach would provide efficient

solutions to our problem.
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3.3 Identifying (efficient) cross-layer dominators

The discussion in the previous section highlighted the significance of assessing and exploiting a

node’s intra- and inter-layer links in order to be considered as a candidate dominator. Assessing

the significance of a node must be quick (in small computational complexity) and cheap (in small

communication complexity, which practically implies small energy consumption as well). There-

fore, we need to devise a method that will rely on connectivity information from the node’s “local”

neighborhood (one or two hops away at most), and without computing sophisticated functions for

assessing the value of the node. For the case of single-layer networks, a node’s degree [48, 99] is a

measure that complies with the above requirements, but has several drawbacks [143].

Our plain intuition for selecting nodes that will eventually be “efficient” (i.e., they will cover as

much of a network area as possible) dominators is that these nodes should be strategically located

in dense areas of the (multilayer) network. In [38] we showed how to identify such nodes in a

single-layer network by defining the Power Community Index (PCI), which is a node centrality

measure.

Definition 3.4 (Power Community Index (PCI)). The PCI index of a node v is equal to k, such

that there are up to k nodes in the 1-hop neighborhood of v with degree greater than or equal to k,

and the rest of the nodes in that 1-hop neighborhood have a degree less than or equal to k.

Now turning to our multilayer network case, we can straightforwardly generalize it for

multilayer networks by ignoring(!) the existence of layers; then we get the Layer-agnostic PCI

(laPCI) defined as follows:

Definition 3.5 (Layer-agnostic PCI (laPCI) [13]). A node has laPCI equal to k, if it has k one-hop

neighbors with a number of links towards any layer greater than or equal to k, and the rest of its

one-hop neighbors have a number of links towards any layer less than or equal to k.

laPCI gives credit to a node whose neighbors have many connections in different layers,

however, it makes no distinction on how those connections are distributed over the layers, which

is problematic. We can cure this, by taking into account the existence of layers:

Definition 3.6 (Minimal-layers PCI (mlPCI) [13]). A node has mlPCIn equal to k, if it has k

one-hop neighbors with the number of links towards at least n layers greater than or equal to k,

and the rest of its one-hop neighbors have a number of links toward at least n layers less than or

equal to k.

mlPCIn characterizes a node for its connectivity in a predefined number of layers. We further

combine mlPCIn values for all n bringing mlPCI for a node v in its final form:

(3.1) mlPCI(v)=
#layers∑

i=1
mlPCI i(v)
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mlPCI categorizes as “good” nodes those who are well connected in many layers compared to

those who are well connected in a few layers.

A disadvantage of the original PCI (and thus of laPCI and mlPCI) is that it is mainly based

on the connectivity of the nodes that participate in the definition of PCI; the connectivity of the

rest of the nodes is ignored. We should somehow incorporate this missed topological information

into our definitions. We do this for a single layer as follows: we calculate the PCI index of a node

as usual (using Definition 3.4) and then – after excluding the nodes that contributed to this PCI

value – we compute a new PCI value with the remaining nodes, and add the two PCI values.

We perform this computation for every layer, and add the resulting indices; we call the obtained

number Exhaustive PCI (xPCI). We calculate xPCI for node S4 in Figure 3.1 by observing that

only nodes S5, S8 and S9 are responsible for defining PCI(S4) at the “Soldiers” layer and node

H2 at the “Helicopters” layer, thus xPCI(S4)= 5. xPCI is not satisfactory as a ranking mechanism

because it creates a lot of ties. To this end, for those k nodes that participate in the xPCI index,

we calculate the number of unique links between them in order to form the final index (actually,

we multiply each PCI value by log2 of the number of links to obtain reasonable numbers even for

large networks). We call this new measure Cross-layer PCI (clPCI).

3.3.1 Distributed CDS in multilayer networks

Here, we describe a distributed CDS generation protocol which makes use of any of the proposed

measures (for illustration purposes, we use clPCI in the pseudocode).

Gathering Data:

• Nodes via the exchange of “Hello” messages gather their 1-hop (N(u)) and 2-hop (N2(u))

neighborhood connectivity.

• Each node calculates and broadcasts its clPCI index. Hence, each node u is aware of the

clPCI values in N(u).

Node Selection:

• For any node u, nodes in N(u) are sorted in decreasing order of their clPCI values.

• Since the algorithm is executed in a distributed fashion, node u first selects as its relays

those 1-hop neighbors that have already been selected as dominators by other neighboring

nodes (if any).

• While there are still nodes in N2(u) which are not neighbors to any node in the set of u’s

relays, select and include in the set of u’s relays the next node from N(u) with the largest

clPCI index that covers at least one new node in N2(u)

It is easy to prove the correctness (i.e., it computes a CDS) of the algorithm. Clearly, the

computation complexity of this algorithm is dominated by the sorting process – O(m× log2m),

for a node with where m neighbors for the computation of the measures. The communication

complexity (per node) is constant (only 2 messages), i.e., O(n) for a n-node network.
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3.4 Experimental evaluation

We performed a simulation-based performance evaluation of the proposed methods in MATLAB.

3.4.1 Experimental settings

3.4.1.1 Competitors

As mentioned in the introduction, there is no prior work on our topic; therefore we used as

baseline competitors source-initiated versions of the degree [48] and OLSR [99] in the “aggregated”

complex network where all layers have been collapsed into a single one. We also include source-

initiated versions of all the proposed ones, namely laPCI, mlPCI and clPCI.

3.4.1.2 Performance measures

We use the size of the resulting connected dominating set as the measure that quantifies the

performance of the competing algorithms in Figures 3.4 and 3.5, and the same measure per layer

in Figure 3.6. Apparently, a small CDS implies small energy consumption, and in most cases it

also implies a short latency; the latency depends also of the “shape” of the dominating set (long

versus bushy ones).

3.4.1.3 Datasets

Due to the lack of publicly available, real-world military multilayer networks, we developed a

generator for multilayer networks in MATLAB. Our aim was to build a generator that could

generate in an algorithmic way a variety of multilayer network topologies, so as to be able to

explain the obtained results afterwards with respect to the topology. The generator was developed

and described in detail in [12], but here, we will present its basic features.

In our topologies each network layer consists of a set of wireless nodes distributed in a

two-dimensional plane. Each node has the same maximum transmission range R. By proper

scaling, we set that all nodes have the same maximum transmission range equal to one. Every

pair of nodes whose Euclidean distance is equal to or less than this maximum transmission range

are assumed to be connected, i.e., they form a Unit Disk Graph (UDG). So in this way the actual

location of nodes is taken into account when computing the connectivity. Moreover, in order to

better approach reality where obstacles prohibit the direct communication between adjacent

nodes, we used non-uniform intra-layer models to distribute the nodes on the two-dimensional

plane, the same way it was done in [89]. The construction of a multilayer network is controlled by

the link density in each layer which is expressed by the average degree (D) of each node, by the

number of nodes per layer (i.e., size of the layer), and the number of layers (L).
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The task of interconnecting the different layers was done with the aid of two parameters:

the number of links a node has towards nodes in different layers, while the second parameter

involves the distribution of interconnections towards the nodes within a certain layer.

Finally, we may require “coverage” (preference) for a certain layer, that is, nodes generating

most of their interconnections towards a specific layer, e.g., most interlinks from the drones layer

are generated towards the soldiers network, etc. With the above considerations we apply the

Zipfian distribution for our interconnectivity generator. The desired skewness is managed by

parameter s ∈ (0,1). We apply three distinct Zipfian laws, one per parameter of interest:

• sdegree ∈ (0,1) in order to generate the frequency of appearance of highly interconnected

nodes,

• slayer ∈ (0,1) in order to choose how frequently a specific layer is selected,

• snode ∈ (0,1) in order to choose how frequently a specific node is selected in a specific layer.

In the next section we will represent the values of these parameters (which collectively will be

called topology skewness) as a sequence of three floats, e.g., 0.5/0.5/0.1, meaning that sdegree = 0.5,

slayer = 0.5 and snode = 0.1. Finally, in a multilayer network the relative size of the layers would

clearly have an impact on the performance of the algorithms. Thus, we equipped our topology

generator with the ability to create multilayer topologies where each can be a percentage (10%,

20%, 40%, 70%) larger than the previous one. So we may have topologies with relatively equi-sized

layers (10%), or topologies with huge layer inequalities (70%).

Table 3.1 records all the independent parameters of our topology generator, their range of

values, and their default values.

TABLE 3.1. Experimentation parameters values.

parameter range default
avg. node degree (D) 6, 8, 10, 12, 16 10
network diameter (H) 7, 15, 30, 40 7
# network layers (L) 2, 3, 4, 5, 6, 7 5

0.1/0.1/0.1
0.1/0.9/0.1

topology skewness 0.1/0.5/0.5 0.1/0.5/0.5
0.5/0.5/0.1
0.9/0.5/0.1

relative size of one 10%, 20%, 40%, 70% 40%
layer to its previous
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3.4.2 Experimental results

3.4.2.1 Impact of topology density

Firstly, we wish to evaluate the impact of topology density on the performance of the algorithms.

To keep the experiment controlled, we vary the density of a single layer keeping the rest unaltered

to the extent possible. The results are illustrated in the bottom plot of Figure 3.4.

6 8 10 12 16

0.76

0.78

0.80

0.82

0.84

0.5/0.5/0.1 0.9/0.5/0.1 0.1/0.1/0.1 0.1/0.9/0.1 0.1/0.5/0.5
0.72

0.74

0.76

0.78

0.80

0.82

0.84

24
84

24
69

25
97

26
45 26
56

24
91

24
88

26
29 26

62 26
85

25
00

24
91

26
22

26
69 26

92

24
84

24
65

25
97

26
38 26

55

25
28

25
13

26
36

26
81 27

08

25
22

23
92

25
69 25

94

24
35

25
26

23
95

25
69 26

01

24
38

25
44

24
29

25
88 26

10

24
65

25
24

23
90

25
67 25

93

24
36

25
50

24
01

25
95 26

21

24
62

Topology characteristics

Network degree

 C
D

S 
si

ze
  (

%
 o

f N
et

w
or

k 
Si

ze
) 

 clPCI  degree  OLSR  mlPCI  laPCI

 clPCI  degree  OLSR  mlPCI  laPCI

 

FIGURE 3.4. Impact of network density and topology skewness on the size of CDS.

Our first observation concerns the size of the generated CDS formed by each competitor; one

would expect that a higher network density would decrease CDS size, but here we observe that

CDS size increases. This is due to the fact that the inter-layer links are spread more uniformly

among layers, and thus there are no ‘hub nodes’ whose existence will result in a decreasing CDS

size for increasing density. Concerning the performance of the competitors, clPCI and mlPCI

produce the smallest CDSs for all D values, but none of them are better than the other. Moreover,

their performance gap from the third best performing algorithms widens with increasing density,

which is due to the fact they exploit the inter-layer links to identify cross-layer dominators.

Now looking at the upper part of Figure 3.4, where the champion algorithms remain the same

as before, we observe the generic trend that CDS size for all competitors increases when the

topology skew is small, i.e., sdegree and snode have small values. Only, when there are “hub nodes”

i.e., sdegree = 0.9 the size of CDS is small.
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3.4.2.2 Impact of network diameter

In Figure 3.5 we evaluate the effect of the multilayer network diameter in the size of the CDS. At

this point we need to say, the each layer is composed of around 500 nodes, and n-layered network

is composed of the previous n−1 layers plus one more layer. As the network diameter increases

the size of the constructed CDS for all methods decreases. The decrement of the diameter is the

result of sparser vicinities, i.e., fewer links between the network nodes. In other words, fewer,

longer (in hops), and more distinct paths towards the nodes of the multilayer network, which

renders the election of those nodes that cover the N2 neighborhood more discrete, and hence

fewer nodes are recruited. Focusing on the evaluation of the competitors, we observe that the

difference in their performance is minimum when H = 7. This is due to fact that when nodes are

relatively “close” to each other, there is significant overlapping in the selected CDSs.
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FIGURE 3.5. Impact of network diameter on the CDS size.

3.4.2.3 Impact of increasing the layer size

Figure 3.6 illustrates the impact of the number and size of layers on CDS size; as expected,

the generic trend is that the size of CDS increases with more layers or more variability in the

relative layer size. We need to say here, that the top layer (Layer 5) in each 5-layered network is

composed of 500 nodes and the remaining layers have increased size with respect the previous

layer as depicted in the x-axis. The purpose of Figure 3.6 is to clarify that the performance of the

proposed methods is the result of selecting a minimum dominating set in each respective layer,

which due to a careful selection of key intra- & interconnected nodes, results in an interconnected

dominating set, i.e., an MCDSML. Evidently, as the size of each layer increases, so does the
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cardinality of the elected CDSs for all methods. The competitors’s ranking obtained from the

previous subsection has remained unchanged, i.e., clPCI selects the smallest CDS in all layers,

and thus the overall minimum MCDSML, which highlights the effectiveness of the proposed

technique.
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FIGURE 3.6. Impact of network size on the CDS size.

3.5 Conclusions

We considered the problem of backbone formation for modern military ad hoc networks which are

composed by multiple subnetworks (“layers” in this chapter’s terminology). We investigated the

possibility of forming the backbone in terms of connected node dominating sets, and subsequently

we defined – for the first time in the literature – the problem of minimum connected node

dominating set for multilayer networks. We recognized the significance of determining “efficient”

cross-layer dominators, and proposed a set of measures (based on network theory concepts) for

detecting them, namely laPCI, mlPCI and clPCI. Then, we proposed a distribution algorithm

for backbone formation based on those measures. We performed a simulation-based evaluation

of the proposed techniques against baseline methods (i.e., degree, OLSR) and showed that the

distributed algorithm based on clpci shows (almost always) the best performance.

31





C
H

A
P

T
E

R

4
ENERGY-AWARE BACKBONE FORMATION IN MILITARY

MULTILAYER AD HOC NETWORKS

4.1 Introduction

In this chapter we delve deeper into the world of military multilayer ad hoc networks

and explore their unique characteristics compared to the traditional wireless ad hoc net-

works [45, 50]. Apart from the broadcast-nature of the wireless communication medium

and mobility which are very common features, these ad hoc networks are usually very large in

terms of the number of participating nodes. Therefore, more critically than for “plain” ad hoc

networks, we need to ensure protocol scalability in the number of nodes. Moreover, we must

carefully consider for reduced delays and for the scarce energy resources. Additionally, due to the

dynamic topology, protocols must be based on primitives that are feasible and efficient to compute

in a distributed manner, and also to engage only computations based on localized information.

Most important though is to consider the nature of the network itself which usually consists of

“subnetworks”.

In the context of the military multilayer ad hoc networks we take into consideration the JTRS

multilayer network paradigm [109] to build upon. Thus, we consider “island” subnetworks as

being the layers of a single, large network, which we call a multilayer communication network. To

make clear this nature, we show in Figure 4.1 a mixed military unit consisting of a tank platoon

belonging to some tank company, and an infantry squad belonging to some infantry platoon.

Related publication [J2]: Dimitrios Papakostas, Soheil Eshghi, Dimitrios Katsaros, Leandros Tassiulas. “Energy-
Aware Backbone Formation in Military Multilayer Ad Hoc Networks”, Ad Hoc Networks (Elsevier), vol.81, pp.17-44,
December, 2018.
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These two units communicate wirelessly via an ad hoc network and advance in the battlefield

pursuing some common operational goal.

soldier layer

T5

S8

S10S9

S7S5

S1

S4
S3

S2

T1

S6

T4

T2

tank layer

T3

FIGURE 4.1. Abstraction of a military multilayer ad hoc network comprised by 2 layers.
Physical obstacles have been removed, and the entities have been projected onto
the 2D space.

In this wireless network we would recognize two “subnetworks”, namely the tank layer and

the soldiers’ layer; for various reasons related to military strategy and hierarchy and terrain

topology, the only links are those shown in the figure. Earlier methods did not allow a node to

participate into two “networks” at the same time, but recent progress in networking could sustain

such situations. In [92] we used terminology from complex networks literature to describe the

topology of such ad hoc networks, and we will use here the same terminololy. Thus, we recognize

two network layers, intra-layer connections (the thin ones) connecting entities of the same type,

and inter-layer links (the tick ones) connecting entities belonging to different layers.

Diverse types of military units participate in modern battlefields that are energy-constrained,

such as soldier, drones, still sensors, and so on. Therefore, VBN construction protocols must

be energy-aware. In this chapter, we investigate the topic of energy-efficient VBN construction

for military multilayer networks using CDSs constructed in a distributed fashion. In principle,

any efficient algorithm for calculating a MCDS seeks to detect nodes strategically positioned

in the topology in order to include them into the DS and thus decrease the size of the obtained

DS, because they “dominate” over a large number of other nodes. For instance, some algorithms

for single layer networks achieve this by looking at the degree of each node [48]. Moreover, if

while searching for nodes to include in the DS we include as criterion apart from their strategic

position, their residual energy, then we can develop energy-aware algorithms for DS construction.
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4.1.1 Motivation and contributions

The architecture of the multilayer networks poses some unique challenges which make topology

control a “tricky” task. We proved in [92] that solutions based on decomposition and/or aggregation

of the entire multilayer network are not efficient; there is significant room for improvement if we

take into account the multilayer structure. Secondly, assigning different weights on intra-layer

versus inter-layer links can not help transform our problem at hand into that of dealing with

the calculation of a weighted DS of the multilayer network, because there is no algorithmic

method yet for the determination of the relative weights so as to produce an efficient backbone for

multilayer networks. Finally, energy-related issues have not been investigated for DS-based VBN

construction algorithms for multilayer networks, even though there is work on energy-agnostic

protocols [92].

In this context, the present chapter makes the following contributions:

• it investigates the issue of energy-aware connected dominating set-based backbones for

multilayer networks;

• it generalizes an earlier proposed centrality measure for identifying nodes with high

residual energy and central position within the multilayer network;

• it develops a distributed algorithm, namely E2CLB which is based on the aforementioned

centrality measure for identifying dominating nodes;

• it analyzes the algorithm’s performance both from a computational/communication com-

plexity perspective and an experimentation-based perspective;

• it compares exhaustively the proposed algorithm against relevant and baseline competitors,

because there is no prior work on the chapter’s subject.

The rest of this chapter is organized as follows: Section 4.2 introduces in formal terms the

problem of constructing energy-efficient connected dominating sets for multilayer networks; Sec-

tion 4.3 proposes a locally computable measure to assess the significance of a node in participating

in an energy-efficient connected dominating set; Section 4.4 develops a distributed algorithm

for calculating the energy-efficient connected dominating set; Section 4.5 provides performance

evaluation results comparing the proposed algorithm against competitors, and finally Section 4.6

concludes the chapter.

4.2 Problem formulation

The main elements of the architecture of a multilayer ad hoc network are the following: the

network consists of a set of nodes, each one beloning to some layer, and having an amount of

energy associated with it which is described by a scalar quantity. Each node has a non-empty set
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of connections towards (some) nodes belonging to the same layer (intra-layer links), and it has a

(possibly empty) set of connections towards nodes belonging to other layers (inter-layer links). All

links are assumed to be bidirectional.

We will now describe our setting using graph-theoretic terms. A multilayer network which

consists of n layers is a pair (GML,EML), where GML = {G i, i = 1, . . . ,n} is a set of “networks”

(G i,E i) (|G i| nodes belonging to layer i, and |E i| edges connecting nodes belonging to layer G i),

and a set of inter-layer links EML = {E i, j ⊆G i ×G j; i, j ∈ {1, . . . ,n}, i 6= j}. Moreover, each node is

annotated with a scalar quantity which represents its residual energy. Then, the problem of

finding an energy-efficient backbone network based on dominating sets for multilayer networks

in a distributed fashion can be described as follows:

Definition 4.1 (The Multilayer Maximum Energy MCDS (ML-MEMCDS) problem). The problem

of calculating a Maximum Energy MCDS (MEMCDS) for a multilayer network (GML,EML)

consists of finding a subset MEMCDS of its nodes such that the following conditions hold:

1. Each node of GML either belongs to MEMCDS or is adjacent to (in one hop distance from)

a node belonging to MEMCDS.

2. The cardinality of set MEMCDS is the minimum possible.

3. The nodes comprising MEMCDS are connected to each other, i.e., there is path from any

node i ∈ MEMCDS to any node j ∈ MEMCDS, ∀i, j. [Intra-layer or inter-layer links may

comprise that path.]

4. The sum of energies of nodes belonging to MEMCDS is the maximum possible.

5. Knowledge of only the closest k-hop neighborhood of a node is permitted.

Corollary 4.1. The problem ML-MEMCDS is NP-complete.

The proof is trivial [47] and thus we omit it. Versions of the problem with directed links,

with incremental maintenance of its solutions in cases of nodes/links additions/removals will be

examined in subsequent works.

We proved in [92] (Theorem 1) that finding a minimum connected dominating sets for every

layer and then trying to connect them does not provide efficient solutions in terms of minimizing

the cardinality of the dominating set. Similar observations were made in [92] for methods based

on ignoring the layer information and calculating connected dominating sets in the “aggregated”

network. It is easy to extend those results for our case where energy issues are present. Thus, in

the next two sections, we will present an efficient heuristic solution to this problem that considers

the layering information.
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4.3 Identifying energy-rich cross-layer relay nodes

In this section we will introduce a locally computable measure to identify prominent nodes to

be included in the MEMCDS. We build upon the PCI family of centrality measures [12] and

provide a generalization of clPCI to solve the problem. To elaborate, in [92] we developed a

backbone construction algorithm based on clPCI which was energy-agnostic, i.e., all nodes were

assumed to somehow replace the energy they deplete, e.g., by fuel, solar panels, etc. However,

in the generic case, energy issues do need to be considered for ad hoc connectivity, especially in

battlefields [122]. Thus, we provide here the EnergyawareclPCI(EclPCI) which, for a node u

with energy equal to E(u) is defined as follows:

(4.1) EclPCI(u)= E(u)× clPCI(u).

When energy is not an issue, then clearly EclPCI ≡ clPCI. Algorithm 4.1 presents a distributed

algorithm for the calculation of EclPCI of node u.

Algorithm 4.1: EclPCI index value calculation.
precondition :Known 1-hop (N(u)) and 2-hop (N2(u)) neighbor connectivity info (ID) of node u
postcondition :Calculation of the EclPCI index value of node u
remarks : m = number of layers in the multilayer network, layer(u) = network layer that

node u is situated, E(u) : residual energy of node u, S = node set, PCI(u),
xPCI(u), clPCI(u), EclPCI(u) : indexes related to node u

1 for layer i ← 1 to m do
2 PCI(u) = xPCI(u) = 0;
3 Build S = u1,u2, ...,un | uk (1≤k≤n) ∈ N(u), layer(uk (1≤k≤n))= i;
4 while S 6= empty do
5 Calculate PCI(u) f or S;
6 Calculate unique links (Linksunique) of nodes participating in PCI(u);
7 xPCI(u) += PCI(u) * log2(Linksunique);
8 Remove nodes that participated in PCI(u) from S;
9 PCI(u)= Linksunique = 0;

10 end
11 clPCI(u) += xPCI(u);

12 end
13 EclPCI(u) = E(u)∗EclPCI(u);

Note that because EclPCI is calculated on a per layer basis it is possible to present some

sort of preference to one or more layers. For example, if the multilayer network incorporates

a layer with nodes with no energy issues, then it might be a wise decision to have many relay

nodes in that layer. This capability however is out of the scope of the present work and it will

not be examined further. In case of ties due to Equation 4.1, the selection of relay nodes may be

random, or in an application-dependent way, e.g., prefering energy-rich nodes over well connected

for resource-scarce environments.
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Proposition 4.1. The computation complexity of EclPCI index calculation is O(∆2) in the worst

case, where ∆ is the maximum node degree in the network.

Proof. The worst case regarding the computation complexity of the EclPCI index calculation is

when a host u has ∆ neighbors and each one of them has ∆ neighbors too; i.e PCI(u)=∆. In such

case and during the calculation of the unique links among neighbors, a host u needs to compare

its neighbor set with ∆ neighbors and the neighbor set comparison has a complexity of O(∆). a

Energy-related augmentation can be applied to mlPCI as well, and in that case we get the

EmlPCI measure. Now, armed with a method to identify energy-rich nodes whose connections

span many nodes in many layers, we are ready to describe a distributed algorithm for calculating

an energy-efficient connected dominating set.

4.4 Distributed energy-efficient backbone formation algorithm

EclPCI which was described in previous section is actually a centrality measure that identifies

those nodes of the network which have high energy levels and at the same time maintain a

strategic/central position among the network layers. In principle, any efficient heuristic algorithm

for calculating a minimum connected dominating set seeks to detect such strategically positioned

nodes in order to decrease the size of the obtained dominating set. Some algorithms for single

layer networks achieve this by looking at the degree of each node [48].

Thus, we exploit the EclPCI measure and incorporate it into a distributed algorithm for

computing an energy-efficient connected dominating set. The algorithm will be called Energy−
E f f icientCrossLayerBackbone(E2CLB) formation algorithm. In principle, a backbone based

on the formation of a CDS whose elements are such well-connected nodes can turn them into

hotspots. There are several solutions proposed in the literature [140] that can alleviate these

kinds of problems, e.g., role rotation, movement control and so on; in general it is a well addressed

problem and therefore we will refrain from replicating the details of such mechanisms here.

Additionally, we need to mention that making E2CLB able to work for unidirectional links,

or weighted links (e.g., using the weight to depict variation in energy consumption during

communication) is straightforward by simply incorporating direction/weight in the calculation

of EclPCI. Such adaptations are abundant in the literature for centrality measures [41], and

thus we skip the relative discussion here. Before delving into technical details of the proposed

algorithm, we will first provide a brief overview of the algorithm, and then we will describe its

constituent parts. In E2CLB, there are mainly three phases, which are the following:

• CDS construction phase.

• Redundant relay node pruning.

• Mediator phase.
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Before these three steps take place, one more procedure evolves that is typical and common

in (almost) all distributed algorithms for ad hoc networks with non Global Positioning System

(GPS)-enabled nodes. During this process, each node learns the topology of its neighborhood,

and also other interesting features (e.g. residual energy) of its neighbors. For E2CLB, each node

learns the connectivity and residual energy of all its neighbors up to its 2-hop neighborhood N2(u);

this preparatory phase will not be described in details since it is very common.

The CDS construction phase is based on a source-initiated relay node selection process that is

executed by every node u. Because this selection process produces many redundant CDS nodes,

a pruning phase follows. Finally, in order to exploit the connectivity among nodes that belong to

the same relay node set and improve the minimum residual energy level of a node in the set, one

more phase called the mediator phase is employed which is based on some heuristic rules.

Algorithm 4.2: Relay node set election.
precondition :Known 1-hop (N(u)) and 2-hop (N2(u)) neighbor connectivity info (ID) of node u
postcondition :Elected relay node set (R(u)) of node u
remarks : EclPCI(u) : index related of node u, M(u) : status of node u with regards to being

[True (T)] or not [False (F)] a relay node

1 Calculate and broadcast own EclPCI index value;
2 Gather the EclPCI index values of the nodes in N(u);
3 Sort nodes in N(u) in decreasing order of their EclPCI index values;
4 repeat
5 Select the node from N(u) with the largest EclPCI index value that covers at least one new

node in N2(u);
6 Include the selected node in R(u);

7 until each node in N2(u) has at least one neighbor in N(u);
8 Broadcast R(u);
9 if selected as a relay node and M(u) = F then

10 M(u) = T ; /* node becomes a relay node */

11 Broadcast status change;

12 end
13 Update 1-hop neighborhood node status (if req);

4.4.1 CDS construction phase

CDS construction (Algorithm 4.2) is divided into two tasks, namely neighbor prioritization and

construction task. During neighbor prioritization task, every node u calculates its own EclPCI

index and it broadcasts its value in a single message to its neighbours. By mutuality of the

distributed protocol, it receives its neighbors’ EclPCI values. Then, it sorts the nodes in N(u)

in non-increasing order of their EclPCI value. In the construction stage, each node u selects

from N(u) and includes in its relay node set R(u) the nodes with the largest EclPCI index value

that cover at least one new node in the N2(u) neighborhood. Using the proof methodology of [37,
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Theorem 4.2], we can easily prove that the resulting relay node sets of all the network nodes form

a CDS.

Proposition 4.2. The computation complexity of the relay node set election process is O(∆3),

where ∆ is the maximum vertex degree in the network.

Proof. The prioritization phase involves neighbor sorting based on EclPCI value, which is

a O(∆∗ log∆) operation. The worst case regarding the construction phase results when a host

u has ∆ neighbors and each one of them contributes ∆ nodes to the coverage of the 2-hop

neighborhood of u. In this case, host u needs to run once over its neighbor set of size O(∆) and

“erase” those nodes of the 2-hop neighborhood of u (which has maximum size O(∆2)) covered

by the specific neighbor; therefore, this operations costs O(∆3), i.e., the total cost progresses as

follows: ∆2 + (∆2 −∆)+ (∆2 −2∆)+·· ·+ (∆2 − (∆−1)∆). a

Algorithm 4.3: The pruning phase.
precondition :Completed relay node set election process from 1-hop neighbors
postcondition :Node updated status
remarks : Tpruning : a timer, Sconstrained : a node set, M(u) : status of node u with regards to

being [True (T)] or not [False (F)] a relay node

1 Start Tpruning;
2 Build Sconstrained = u1,u2, ...,un | uk (1≤k≤n) ∈ N(u)∧N2(u),

M(uk (1≤k≤n))= T, EclPCI(u) < EclPCI(wk (1≤k≤n));
3 if Sconstrained is subject to N(u)⊂ N(u1)∪N(u2)...∪N(un) and u1,u2, ...,un form a connected graph

then
4 Wait for expiration of Tpruning;
5 if M(uk (1≤k≤n)) = T then
6 M(u) = F ; /* node becomes a plain node */

7 Broadcast status change;
8 Exit pruning stage;

9 else
10 Restart pruning stage;
11 end
12 else
13 M(u) = T ; /* node remains a relay node */

14 Broadcast status;
15 exit pruning stage;

16 end

4.4.2 Pruning phase

It is known that distributed, source-initiated dominating set construction algorithms produce

DSs with many redundant nodes [100],[116]. For our needs, we design a distributed pruning
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phase, which is executed by relay nodes only. Each candidate relay node is aware of its status,

i.e., being a relay or not due to step 8 of Algorithm 4.2. Each relay node waits until all its one-hop

neighbors decide their “relay status” before it enters the pruning phase (Algorithm 4.3).

Moreover, in order to confront the case where more than one relay nodes enter the pruning

phase simultaneously, we “prioritize” the execution of the pruning rules in such a way that relay

nodes with smaller residual energy level execute it earlier than relay nodes with larger residual

energy level. In order to do that each node i whenever is selected as a relay node it calculates a

backoff time according to Equation 4.2:

(4.2) Tpruning = E(i)
|R(u)| +`,

E(i) is the residual energy of node i, and |R(u)| is the cardinality of the relay node set of node u

that node i participates in; ` is a unique pseudo-random number calculated by node i in the

range [0,0.1] that is used in order to solve any ties between relay nodes in |R(u)| with the same

residual energy level.

So, each relay node before starting to execute the pruning rules waits first for the backoff

time to expire. In the case where more than one nodes have selected the same node i as a relay

node, that relay node will calculate more than one backoff times, i.e., a backoff time of each

different relay node set that i participates in, but use during the pruning stage only the smaller

backoff time between them. It is interesting to notice that the backoff time formula favors the

elimination of relay nodes that have either small residual energy and/or belong to a relay node

set with many participants. To achieve a good balance between efficiency and overhead in our

work we make use of the restricted pruning Rule k as this self pruning scheme, in general, is

more efficient in reducing the relay node set than several existing schemes that ensure the

broadcast coverage [133]. This rule can be implemented with knowledge of either 2-hop or 3-hop

neighborhood [33]. In the pruning rule we make use of connectivity as quantified by EclPCI

as priority value in order to establish a total order among nodes that participate in the CDS.

Connectivity has been proved to be the most efficient priority under all circumstances [133]. The

complete pruning phase is depicted in Algorithm 4.3.

Proposition 4.3. The computation complexity of the pruning phase is O(∆3), where ∆ is the

maximum vertex degree in the network.

Proof. A relay node u in order to decide if it will act as a relay node or not it needs to calculate

the coverage capability of a connected graph composed of both 1-hop and 2-hop neighbors. Thus,

each relay node u compares its neighbor set with ∆2 neighbors in the worst case, and the neighbor

set comparison has a O(∆) complexity. a
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4.4.3 The mediator phase

The central idea of this phase is to further reduce the relay node set by examining if a particular

relay node can be accessed through another relay node; we call this relay node a mediator

(Algorithm 4.4). The mediator heuristic is employed sequentially to relay nodes of the same set,

in increasing order of their EclPCI value. Thus, a relay node i with smaller EclPCI index value

than other nodes from the same relay node set will be examined first if it can be reached through

another relay node, and if so, it will be removed from the respective relay nodeset i f f it has less

residual energy from the relay node that will act as a mediator.

Algorithm 4.4: The mediator phase.
precondition :Completed pruning process from 1-hop relay nodes
postcondition :Updated relay node set
remarks : Tmediator : backoff timer, Srelays: node set, R(u) : relay node set of node u, M(u) :

status of node u with regards to being [True (T)] or not [False (F)] a relay node

1 Start Tmediator;
2 Update R(u) = u1,u2, ...,un | uk (1≤k≤n) ∈ N(u), M(uk (1≤k≤n))= T;
3 Sort nodes in R(u) in increasing order of their EclPCI index value;
4 Broadcast R(u);
5 Set Srelays = R(u);
6 Sort nodes in Srelays in increasing order of their residual energy;
7 Wait for expiration of Tmediator;
8 repeat ∀ node vk (1≤k≤n) in R(u), in increasing order of their EclPCI index value
9 repeat ∀ node wk (1≤k≤n) in Srelays, in increasing order of their residual energy level

10 if E(wk)> E(vk) and vk ∈ R(wk) then
11 remove vk from R(u);
12 Broadcast R(u);
13 Set wk as a mediator to get to vk;
14 break;

15 else
16 select the next node from Srelays;
17 end
18 until Until all nodes in Srelays are checked;
19 select the next node from R(u);

20 until Until all nodes in R(u) are checked;

Moreover, with the intention of avoiding race conditions regarding a relay node that is

included in more than one relay node sets we resorted to prioritizing the removal of the relay

nodes in such a way that nodes who have smaller EclPCI index value take higher priority to

decide about their relay node sets than other nodes that have larger EclPCI index value. In

order to do that, each node u calculates a backoff time and executes the mediator heuristic right

after the expiration of the respective Tmediator timer.
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The mediator backoff time is calculated with Equation 4.3.

(4.3) Tmediator =
EclPCI(u)

|R(i)| .

E(u) is the residual energy of node u and |R(i)| is the cardinality of the relay node i that is

under consideration to be removed (it is used for normalization purposes). All in all, the mediator

heuristic is an indirect approach to sustain as long as possible the number of alive nodes in the

network [75] [56] or equally the fraction of alive nodes [136]. Next, we present the pseudocode of

the mediator heuristic.

Proposition 4.4. The computational complexity of the mediator phase is O(∆2 × log∆) in the

worse case, where ∆ is the maximum degree in the network.

Proof. In the worst case, a node with degree equal to ∆ will have ∆ relays. Thus, after sorting

them (with cost ∆× log∆) a serial scan over them takes place with cost O(∆) and while scanning

each, a new sorting over the rest relays is performed with cost O(∆× log∆). a

4.4.4 Communication overhead of E2CLB

The following theorem presents the communication overhead and latency (in terms of information

exchange) of the proposed algorithm.

Proposition 4.5. In bidirectional networks, the execution of E2CLB algorithm requires 7 rounds

to complete.

Proof. The 2-hop information used by the relay node set election process can be collected via two

rounds of information exchanges. In round 1, each node advertises its ID and residual energy

level and builds its 1-hop neighbor set based on the advertisement of its neighbors. In round 2,

each node advertises its 1-hop neighbor set and identifies links among 1-hop neighbors. These

two rounds are present in any distributed protocol where the nodes need to become aware of their

neighborhood. In round 3, each node calculates its EclPCI index value and advertises it together

with its 2-hop neighbor set. Then it identifies links among 2-hop neighbors. In round 4, each node

calculates and advertises its own relay node set and updates 1-hop neighbor status. In round 5,

the restricted Rule k is applied to each relay node and each one of them advertises its status. In

round 6 each node advertises its updated relay node set and applies the mediator heuristic to

each one of the participating relay nodes. Finally, in round 7 the composition of the updated relay

node set is advertised (if needed). a

4.5 Performance evaluation

In this section we will present the details of the evaluation setting and illustrate the results.

In particular, in subsection 4.5.1 we present the competing algorithms, and in subsection 4.5.2

43



CHAPTER 4. ENERGY-AWARE BACKBONES FOR MULTILAYER AD HOC NETWORKS

we give the performance measures of the comparison. In subsection 4.5.2.1 we describe the

network topologies used in our simulation, and in subsection 4.5.3, we present and comment on

the obtained results.

4.5.1 Competing algorithms

The first thing to note is that, instead of EclPCI, we can use in its position the EmlPCI measure

and thus get the Energy-Efficient MultiLayer Backbone (E2MLB) formation algorithm ; or we

can use the clPCI measure – which does not take the residual energy of a node into account

– and get the Energy-Unaware Cross Layer Backbone (EUCLB) formation algorithm which is

actually the algorithm proposed in [92]. These two algorithms along with some baseline ones that

will be described in the next paragraph will be used as competitors to E2CLB.

Degree-based CDS construction is a very popular technique, and thus we looked for gen-

eralizations of degree centrality in multilayer networks. We call the respective competitor as

Energy-Efficient Weighted Degree Backbone (E2WDB) which uses a generalized notion of degree

found in [90]. This algorithm uses the same mechanics as E2CLB to create the CDS; in particular

it uses 2-hop connectivity information and it incorporates the pruning phase. However, in its

plain version it does not include the mediator heuristic, but its enhanced version called E2WDB*

does include this heuristic.

The next competing algorithm is based on Tang et al. algorithm to form a MCDS [120],

namely EMCDS. This algorithm is not localized, as it requires global information to compute

the relay node set. However, it can produce a near-optimal forward node set. Here we use it as a

substitution of a “perfect” algorithm that produces the optimal result both in terms of the size of

the CDS constructed and the energy efficiency. It is emphasized that EMCDS is based on an

1-hop connectivity info in order to build the CDS. The impact of the mediator heuristic on the

performance of EMCDS is presented separately under the algorithm EMCDS*.

4.5.1.1 Analytic computation and communication complexity of the competitors

Aparently, E2MLB and EUCLB present the same communication overhead with E2CLB, be-

cause they use the same heuristics during the CDS construction. On the other hand, EMCDS

communication overhead varies according to the position of the most energy efficient node in

the network [120]. To detect this in a distributed fashion, we need O(n∗ logn) [129] messages

by constructing some spanning tree, and then we need O(diameter) rounds for termination

where each node sends O(1) messages. Therefore, EMCDS has O(n∗ logn) message complexity,

and O(diameter) delay. E2MLB and EUCLB present the same computation complexity with

E2CLB; E2WDB variations and EMCDS variations have O(∆) cost.
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4.5.2 Performance measures

So far the evaluation of an energy-efficient backbone construction algorithm in a routing protocol-

independent way is done according to one of the following ways: i) the first node to die, ii) the

number (or fraction) of alive nodes, iii) the time until the network fails to construct a backbone,

iv) the fraction of connected dominating set nodes that remain alive, v) the time until the packet

delivery ratio drops “drastically”. In this work we employ several detailed – and not simply gross

– generalized performance measures which are described in the sequel. Competing algorithms

are compared in terms of the size of the CDS, the mean per node minimum node energy in the

relay set, the mean cardinality of each relay node set, and the message complexity to build each

relay node set. We say an algorithm is more efficient than another algorithm if it generates a

smaller CDS [120, 143]. Additionally, an algorithm that manages to establish per node a relay

set with larger minimum residual energy level is considered to be more energy efficient than

another algorithm whose per node relay set includes relay nodes with less residual energy; this

measure is a direct approach to define the network lifetime. Moreover, we use the size of the

relay set as another performance measure, as the smaller the relay set per node, the smaller the

volume of broadcast message transmissions in the network is, which subsequently translates into

a reduction in node interference, bandwidth usage, and energy savings for the non-relay nodes.

4.5.2.1 Datasets

Due to the lack of publicly available, real world military multilayer networks, we created multi-

layer weighted networks in MATLAB [12]. The alternative of developing our solutions over an

“programmable” network, such as Software-Defined Networking (SDN) – although appealing at

first glance – suffers mainly from the fact that it does not allow for an extensive experimentation

with large scale topologies with varying connectivity. Existing wireless testbeds, e.g., NITOS 1

although being useful experimental facilities, they can not serve our aforementioned goals.

Note that, in this chapter, in order to have full control over the network topology and on the

way energy (i.e., weights) is distributed among nodes we apply four distinct Zipfian distributions

(compare with §3.4.1.3), which can produce from uniform to highly skewed distributions for every

parameter of interest. The desired skewness is managed by parameter s ∈ (0,1). We apply :

• sdegree ∈ (0,1) in order to generate the frequency of appearance of highly interconnected

nodes,

• slayer ∈ (0,1) in order to choose how frequently a specific layer is selected,

• snode ∈ (0,1) in order to choose how frequently a specific node is selected in a specific layer,

• sweight ∈ (0,1) in order to choose how much uniformly weights are distributed in the

multilayer network.

1https://nitlab.inf.uth.gr/NITlab/nitos
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Moreover, we use two different approaches to apply the Zipf ian laws; i.e., by selecting nodes

either in increasing or decreasing order of their degree. We selected a default setting for each of

the parameters of interest and created various datasets that we used to evaluate the efficiency

of each competing algorithm. Collectively, we call these parameters as the topology skewness,

and represent it as a sequence of four floats, e.g., 0.5−0.5−0.5−0.5, meaning that sdegree = 0.5,

slayer = 0.5, snode = 0.5 and sweight = 0.5 (which are the default settings we used to create the

datasets). We perform experiments and present the performance of the competing algorithm

when using datasets which differ in the topology skewness settings. In a multilayer network

the relative size of the layers clearly has an impact on the performance of the algorithms. Thus,

we equipped our topology generator with the ability to create multilayer topologies where each

layer can be a percentage (10%, 20%, 30%, 50%, 70%) larger than the previous one. So we have

topologies with relatively equi-sized layers (10%), or topologies with huge layer inequalities (70%).

Table 4.1 records all the independent parameters of our topology generator, their range of values,

and their default values.

TABLE 4.1. Experimentation parameters values.

parameter range default
avg. node degree (D) 4, 6, 10, 12, 16 6
network diameter (H) 5, 10, 20, 40, 70 10
#network layers (L) 2, 3, 4, 5, 7 4
size of a layer relative 10%, 20%, 30%, 50%, 70% -
to its adjacent layers

4.5.3 Simulation results

We performed a simulation-based performance evaluation of the competing algorithms in MAT-

LAB. We repeated each experiment 5 times, and recorded the variation in the performance,

but each result was so tightly concentrated around the mean that the error bars are hardly

recognizable in the plots.

4.5.3.1 Impact of topology density

Throughout this section, we consider the impact of topology density on the performance of

each competitor. Firstly, in Figure 4.2 we evaluate the per layer size of the CDS that each

competitor creates. The first observation is that the size of the CDS is almost a decreasing

function with respect to the node density, which is consistent with the existing results previously

obtained in [119]. That is due to the fact that the higher the network density the greater the

coverage capability of the multilayer network nodes, and thus the smaller the size of the CDS.

It is interesting that the distribution of the CDS nodes among the layers is almost uniform

for EMCDS (up to 5% variance) and for both E2CLB, EUCLB (up to 10% variance), while it

increases in each layer for E2MLB (approximately from 5% up to 10%). The aforementioned
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4.5. PERFORMANCE EVALUATION

behavior has to do with the different way that each competitor creates the CDS. In EMCDS,

each node that is selected to participate in the CDS, selects recursively its own nodes for the

CDS which result to the uniform distribution of the CDS nodes on the multilayer network nodes.
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FIGURE 4.2. Impact of network density on the size of CDS.

On the other hand, both EUCLB and E2CLB calculate per layer the CDS. The unique

behavior of E2MLB is justified by the fact that it multiplexes different layers in order to calculate

the EmlPCI value. In EMCDS the size of the CDS is from 27% (best case) up to 60% (worst

case) larger than the best performing algorithm, which is EUCLB. The high performance of

EUCLB regarding the size of the CDS has been shown in [92]. The second best performing

algorithm is E2CLB (generally, both algorithms present almost the same performance, but in

some cases E2CLB presents up to 9% worse performance e.g., at layer 4 when degree = 6), third is

E2WDB (up to 10% worse performance)and then follows E2MLB (up to 20% worse performance).

Focusing on all competitors, we observe that the difference in their performance is minimum

when degree = 16. This is due to fact that when nodes are relatively “close” to each other, there

is significant overlapping in the selected CDSs. E2WDB∗ and EMCDS∗ performance is not

considered here as the mediator heuristic does not affect the total number of ECDS nodes in the

network. Therefore these two improved algorithms present the same efficiency regarding the size

of the ECDS with their “clean” versions.

Next, in Figure 4.3 we evaluate the mean per layer node minimum relay node energy. The

first observation is that compared to the previous experiment, now EUCLB presents the worst

performance (in most cases). That is expected as EUCLB is unaware of the residual energy of

each of the selected nodes for the CDS. However, we see that in some cases EUCLB presents

even better performance than EMCDS does (e.g., when degree = 4), but this is due to the

smaller CDS it creates. The second observation is that generally the competitors create per layer

node more efficient CDS as the network density increases. This is because the larger network
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FIGURE 4.3. Impact of network density on the energy level of each relay node (on the
average the worst case scenario).

density presents more opportunities for nodes with smaller residual energy level to be substituted

by more energy efficient nodes. The best performing algorithms are E2CLB and E2MLB (we

examine the performance of E2WDB∗ and EMCDS∗ right afterwards), with the first being from

4% (when considering relatively sparse networks) up to 20% (when considering relatively dense

networks) more efficient than the second one. The performance gap when considering networks

with different density is due to the fact that in dense networks both the pruning process and

the mediator stage work more efficiently; i.e., in dense networks it is more likely to find nodes

with less energy and exclude them from the CDS or reach them through other nodes which have

a larger residual energy level. The third best performing algorithm is EMCDS and last comes

E2WDB. However, E2WDB performs better than EMCDS when degree = 4, which is justified

by the fact that EMCDS creates a large CDS (more than 35% larger than the CDS of E2WDB)

and consequently many nodes with less energy are likely to participate in the CDS. This however

does not exist in denser network topologies (except for the Layer 1 when degree = 6,10,16). The

next observation concerns the efficiency of the mediator heuristic. Both E2WDB∗ and EMCDS∗

present better performance compared to their version that lacks the heuristic. More specifically,

E2WDB∗ is from 4% (when considering relatively sparse networks) up to 21% (when considering

relatively dense networks) more efficient than E2WDB. For EMCDS∗, the corresponding figures

are better compared to EMCDS from 9% up to 24% (in most cases is even better than E2MLB

when degree > 4). The mediator heuristic is more effective in EMCDS∗ because it creates a relay

node set with larger cardinality, thus the likelihood to be removed those nodes who participate in

the CDS and have less residual energy increases.

Next, in Figure 4.4 we evaluate the mean per layer node relay node set cardinality. The first

observation is that all competitors (except from EMCDS and EMCDS∗ which use a different

approach in order to calculate the CDS) create small per layer node relay sets. This is something

desirable in order to reduce the number of redundant messages in broadcasting situations [116].
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FIGURE 4.4. Impact of network density on the size of the relay node set of each network
node(on the average).

The best performing algorithm is E2MLB (which interestingly is presenting the larger CDS)

and then follows E2CLB, E2WDB∗, E2WDB and finally EUCLB (which presents the smaller

CDS). The second observation is that the mediator heuristic for one more time improves the

efficiency of E2WDB and EMCDS regarding the per layer node relay node set cardinality (on the

average) by 14% up to 55% for the E2WD∗ and by 28% up to 90% for the EMCDS∗. The higher

efficiency of the mediator heuristic in EMCDS∗ is justified by the larger CDS that EMCDS

produces compared to E2WDB.
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FIGURE 4.5. Impact of network density on the performance of each algorithm.

Finally, in Figure 4.5 we summarize the aforementioned per layer results and present them

in one diagram in order to have a better overview of the impact of the topology density on

the performance of each competitor. From the bottom plot we conclude that the size of the

CDS decreases as the network density increases, for every algorithm. From the middle plot we
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conclude that generally the CDS efficiency (in terms of the minimum energy that each CDS

node has) is proportional to the network density. Finally, from the upper plot we conclude that

the per network node size of the relay node set is irrespective to the network density.

4.5.3.2 Impact of network diameter

In this section, we consider the impact of network diameter on the performance of each competitor.

Firstly, in Figure 4.6 we evaluate the per layer size of the CDS that each competitor creates. The

first observation is that as the network diameter increases the size of the constructed CDS for

all algorithms increases. The increment of the CDS is the result of sparser vicinities, i.e., fewer

links between the network nodes. In other words, fewer, longer (in hops), and less distinct paths

exist towards the nodes of the multilayer network, which renders the election of those nodes that

compose the backbone and ensure the overall network connectivity less discrete, and hence more

nodes are recruited.
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FIGURE 4.6. Impact of network diameter on the size of CDS.

It is interesting that while all the competitors manage to keep the per layer size of the CDS

under control for the various diameter parameter settings (from 5% up to 20% CDS increase

per diameter setting until when diameter = 40), they fail to do that when diameter = 70 and the

per layer size of the CDS increases uncontrollably by approximately 60%. At that point is less

prominent to find the best situated nodes in the network and therefore more nodes are selected

to participate in the CDS. Focusing on the evaluation of the competitors, their performances

follow the same pattern as in that of previous subsection. To elaborate, EUCLB still remains the

champion algorithm but now is closely followed by E2CLB (or even loses by him e.g., in Layer 1

when diameter = 5 and when diameter = 70, or in Layer 3 when diameter = 70). In MCDS the

size of the CDS is from 35% (best case) up to 92% (worst case) larger than that of EUCLB. The

larger per layer differences in the CDS size are noted when diameter = 70. The reason for this
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is twofold. First, larger settings in the diameter parameter result in sparser vicinities in the

network. Second, the sparser vicinities make the pruning process in EMCDS less efficient when

only 2-hop neighborhood information is used. As about E2WDB it presents an almost equivalent

performance with E2CLB when diameter = 5,10 and 20 (up to 5% worse performance)and worse

performance compared to E2CLB when diameter = 70 (from 10% up to 20%). Finally, the E2MLB

CDS is up to 18% larger than that of E2CLB.
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FIGURE 4.7. Impact of network diameter on the energy level of each relay node (on the
average the worst case scenario).

Figure 4.7 illustrates the impact of network diameter on the mean per layer node minimum

relay node energy. As expected, the first observation is that the generic trend is for EUCLB to

present the worst performance among all the competitors. Interestingly, however it is even better

than EMCDS∗ when diameter = 70. This is due to the extremely larger CDS that EMCDS∗

creates compared to EUCLB in conjunction with the sparser vicinities that exist in the network

when diameter = 70. The best performing algorithm in this experiment is E2CLB. It presents

comparable performance to E2MLB (approximately 5% better performance) when diameter = 70,

which is getting even better for smaller settings of the diameter (up to 19% better performance

when diameter = 5). Definitely, E2CLB can better distinguish between nodes that are situated

relatively “close” to each other (smaller settings of the diameter),and select for the CDS those

who have the larger residual energy. However, this positive performance gap diminishes in larger

settings of the diameter, where sparser vicinities result to more nodes to be selected in the

CDS. On the other hand E2MLB is better than E2WDB (up to 20% better performance) and

EMCDS (up to 20% better performance when diameter ≤ 40 and up to 31% better performance

when diameter = 70). The worse performance of EMCDS is noted when diameter = 5 and when

diameter = 70. In both cases, the root of the problem is the myopic look that EMCDS has that

adds in the CDS many nodes with little energy in dense (diameter = 5) or sparse (diameter

= 70) topologies compared to E2WDB. Concerning the impact of the mediator heuristic on the
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performance of E2WDB and EMCDS, it is noteworthy that it improves the mean performance of

E2WDB∗ and EMCDS∗ by 10% and 15% respectively. However, this performance improvement

diminishes (it drops to approximately 5% for both cases) when the network topology is getting

sparse (diameter = 70). Nevertheless, E2MLB presents better performance than E2WD? (up to

8% better performance in all layers except for Layer 1 where E2WD∗ performance improves and

gets up to 5% better than that of E2MLB).

Regarding the impact of network diameter on the mean per layer node minimum relay node

set cardinality which is depicted in Figure 4.8 we notice that it is negligible. All the competitors

which take into account 2-hop connectivity info for their calculations manage to decompose

efficiently the network structure (e.g., skinny or bushy shape) and continue to create small per

layer node relay sets. Notably, this time the champion performing algorithms are both E2CLB

and E2MLB.
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FIGURE 4.8. Impact of network diameter on the size of the relay node set of each
network node(on the average).

Finally, in Figure 4.9 as a brief statement of the most important information in a piece we

summarize the aforementioned per layer results and present them in one diagram. From the

bottom plot we conclude that generally the size of the CDS increases as the diameter parameter

settings increase, for every algorithm. From the middle plot we conclude that generally the

algorithms efficiency (in terms of the mean per network node minimum relay node energy) is

considered irrespective to the network diameter. Finally, from the upper plot we conclude that

the per network node size of the relay node set is irrespective to the network diameter.

4.5.3.3 Impact of number of layers

In this section, we consider the impact of the number of network layers on the performance

of each competitor. Firstly, in Figure 4.10 we evaluate the per layer size of the CDS that each
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FIGURE 4.9. Impact of network diameter on the performance of each algorithm.
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FIGURE 4.10. Impact of the number of network layers on the size of CDS.

competitor creates. First, we note that the size of the CDS is a decreasing function with respect

to the number of layers. This happens because as the number of layers increases it increases the

number of interlinks among layers. Thus, the coverage capability of nodes that communicate

with nodes in other layers increases which result to the reduced CDS. Focusing on the evaluation

of the competitors, we observe that EUCLB remains the champion algorithm regarding the size

of the CDS, followed by E2CLB (up to 10% worse performance), by E2WDB (up to 13% worse

performance), by E2MLB (up to 29% worse performance) and finally by EMCDS (up to 71%

worse performance).

Figure 4.11 illustrates the impact of the number of network layers on the mean per layer

node minimum relay node energy. The first observation is that the mean per layer node minimum

relay node energy is a decreasing function with respect to the number of layers (e.g., in layers
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FIGURE 4.11. Impact of the number of network layers on the energy level of each relay
node (on the average the worst case scenario).

1,2,3). This is justified by the reduced per layer size of the CDS when considering an increasing

number of network layers. As the size of the CDS is reduced it is reduced the likelihood of

the less energy efficient nodes to be substituted by other more energy efficient nodes. The best

performing algorithm is E2CLB, followed by E2MLB (up to 15% worse performance), next by

EUCLB (up to 29% worse performance), next by E2WDB (up to 31% worse performance), and

finally by EMCDS (up to 36% worse performance). The good performance of EUCLB compared

to E2WDB and EMCDS, while it is unaware of the residual energy of the network nodes is due

to the fact that energy-rich nodes are centrally situated in the network. Finally, note that the

mediator heuristic improves the performance of E2WDB and EMCDS by up to 12% and 24%,

respectively.

Next, in Figure 4.12 we evaluate the mean per layer node relay set cardinality. The best

performing algorithm is E2CLB and then follows E2MLB, E2WDB∗, E2WDB, EUCLB. The

mediator heuristic improves the efficiency of E2WDB and EMCDS regarding the per layer node

relay node set cardinality (on the average) by 14% up to 31% for the E2WD∗ and by 34% up to

56% for the EMCDS∗.

Finally, in Figure 4.13 we summarize the aforementioned per layer results and present them

in one diagram. From the bottom plot we conclude that the size of the CDS decreases as the

number of layers increases, for every algorithm. It is straightforward that the larger the number

of layers is the larger the need for more nodes to participate in the CDS becomes. From the

middle plot, we conclude that generally the CDS efficiency (in terms of the mean per network

node minimum relay node energy) is inversely proportional to the number of network layers.

This is due to the selection of nodes for the CDS is driven primarily from the network topology,

i.e., to establish network connectivity, and not from the energy level of each network node. The

performance decrease approximately is 9% for E2CLB, 20% for E2MLB, 11% for E2WDB (14%
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FIGURE 4.12. Impact of the number of network layers on the size of the relay node set
of each network node(on the average).
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FIGURE 4.13. Impact of the number of network layers on the performance of each
algorithm.

for E2WDB∗), 6% for EMCDS (8% for EMCDS∗) and 8% for EUCLB. Finally, from the upper

plot we conclude that the per network node size of the relay node set is irrespective to the number

of network layers. Note that the mediator heuristic improves the efficiency of E2WDB and

EMCDS regarding the per network node relay node set cardinality by 21% up to 31% for the

E2WD∗ and by 40% up to 52% for the EMCDS∗.

4.5.3.4 Impact of increasing the layer size

In this section, we consider the impact of increasing the layer size on the performance of each

competitor. Firstly, in Figure 4.14 we evaluate the per layer size of the CDS that each competitor
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creates. Note that the size of the CDS is an increasing function with respect to the increasing

layer size (except for Layer 1). This happens because as the size of each layer increases it

increases the need for more nodes to act as connectors and thus for more nodes for the CDS.

Focusing on the evaluation of the competitors, we observe that in the majority of cases EUCLB

remains the champion algorithm regarding the size of the CDS, followed by E2CLB (up to 6%

worse performance), by E2WDB (up to 8% worse performance), by E2MLB (up to 21% worse

performance), and finally by EMCDS (up to 59% worse performance).
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FIGURE 4.14. Impact of the network size on the size of CDS.
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FIGURE 4.15. Impact of the network size on the energy level of each relay node (on the
average the worst case scenario).

Figure 4.15 illustrates the impact of increasing the layer size on the mean per layer node

minimum relay node energy. The first observation is that the mean per layer node minimum
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relay node energy is irrespective to the increasing layer size. This is justified by the increased per

layer size of the CDS when considering an increasing number of network layers. As the size of the

CDS is increased it is more likely that the less energy efficient nodes to be substituted by other

more energy efficient nodes. The best performing algorithm is E2CLB, followed by E2MLB (up to

18% worse performance), next by EUCLB (from 16% up to 25% worse performance), by EMCDS

(from 12% up to 31% worse performance), and finally by E2WDB (from 19% up to 29% worse

performance). Once again the weight distribution on the topology is responsible for the better

performance of EUCLB compared to E2WDB and EMCDS, (energy efficient nodes are centrally

situated in the network). Moreover, note that with the mediator heuristic the performance of

E2WDB∗ and EMCDS∗ is improved compared to their “clean” versions by up to 10% and 18%,

respectively.

Next, in Figure 4.16 we evaluate the mean per layer node relay node set cardinality. In this

experiment both E2CLB and E2MLB compete for presenting the best performance (without

though having a clear winner), followed by EUCLB and E2WDB. Note that, the mediator

heuristic improves the efficiency of E2WDB∗ and EMCDS∗ regarding the per layer node relay

node set cardinality (on the average) by 5% up to 26% for the E2WD∗ and by 11% up to 53% for

the EMCDS∗.
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FIGURE 4.16. Impact of the network size on the size of the relay node set of each
network node(on the average).

In Figure 4.17 we summarize the aforementioned per layer results and present them in one

diagram. From the bottom plot we conclude that the size of the CDS increases with increasing

(with respect to the previous layer) layer size, for every algorithm. From the middle plot we

conclude that generally the algorithms’ efficiency (in terms of the mean per network node mini-

mum relay node energy) is considered irrespective to the increasing layer size. Finally, from the

upper plot we conclude that the per network node size of the relay node set is irrespective to the

increasing layer size.

57



CHAPTER 4. ENERGY-AWARE BACKBONES FOR MULTILAYER AD HOC NETWORKS

2.
0

1.
7

1.
7

1.
7 1.
8

1.
8

1.
8

1.
8 1.
9 2.
02.
5

2.
3

2.
2

2.
2

2.
1

2.
1

1.
8

1.
8

1.
8 1.
9

6.
1

5.
5

5.
4

5.
5 5.
8

5.
0

3.
8

3.
6

3.
7 5.
0

2.
4

2.
1

2.
1

2.
1

2.
0

0.
48

5

0.
48

6

0.
47

7

0.
46

1

0.
46

4

0.
44

4

0.
43

8

0.
44

3

0.
43

0

0.
42

7

0.
38

7

0.
38

8

0.
38

6

0.
37

9

0.
37

8

0.
42

2

0.
42

1

0.
41

7

0.
40

7

0.
40

8

0.
39

4

0.
38

3

0.
38

3

0.
37

9

0.
38

00.
45

0

0.
43

9

0.
43

9

0.
43

5

0.
43

2

0.
39

3

0.
39

6

0.
38

9

0.
38

3

0.
38

6

49
1

56
2 65
0 85
0

10
69

53
9 63
1 73
3 94
4

11
94

51
1 59
2 68
3 88
8 11
30

51
1 59
2 68
3 88
8 11
30

70
3 83
9

95
7 12
48 16
00

70
3 83
9

95
7 12
48 16
00

47
4 55
4

63
4 82
3

10
42

2

3
4
5
6
7

R
el

ay
 N

od
e 

Se
t

C
ar

di
na

lit
y

 E2CLB  E2MLB  E2WDB  E2WDB*  EMCDS  EMCDS*  EUCLB

0.3

0.4

0.5  E2CLB  E2MLB  E2WDB  E2WDB*  EMCDS  EMCDS*  EUCLB

M
in

im
um

 re
la

y 
no

de
en

er
gy

10% 20% 30% 50% 70%

400

800

1200
1600
2000

C
D

S 
si

ze

Increasing layer size with respect to previous layer

 E2CLB  E2MLB  E2WDB  E2WDB*  EMCDS  EMCDS*  EUCLB

pe
r n

et
w

or
k 

no
de

pe
r n

et
w

or
k 

no
de

pe
r n

et
w

or
k

FIGURE 4.17. Impact of increasing the layer size on the performance of each algorithm.

4.5.4 Evaluation of network load

In this section we evaluate the network load on nodes included in the CDS. In each experiment,

we examined the simultaneous communication among distinct pairs of nodes (randomly selected)

in a dozen of topologies with the same characteristics and measured the average queue length.

Here, we include a small indicative subset of the obtained results. In particular, we show the

results which concern the simultaneous communication between 200 pairs of nodes, and record

the queue length of each CDS node. The overall conclusion is that all queues remain bounded,

and in particular only a couple of node queues reach a size of maximum eleven messages.

4.5.4.1 Network load in sparse networks

Figure 4.18 illustrates the network load on the CDS nodes when considering sparsely connected

multi layer networks. Namely, we utilized networks consisting of 4 equi-sized layers, with a

total number of nodes equal to 2000 and layer diameter equal to 70. The generic observation is

that none of the competing methods presents any likely-overflow buffer phenomenon. Moreover,

the E2CLB algorithm manages to have the largest number of nodes with the least number of

messages, i.e., around 800 nodes whose queue accommodates on the average one message.

4.5.4.2 Network load in dense networks

Next, in Firure 4.19 we examine the network load on dense multilayer networks. The setting is

same as previously, but now with a diameter of each layer equal to around 50. We observe the

same pattern of performance as in the previous experiment, and we see – for all competitors –

fewer nodes with larger queues which is to be expected since in dense networks more paths are

available to serve traffic.
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FIGURE 4.19. Network load in dense networks.

4.5.4.3 Network load in networks with more layers

Next, in Firure 4.20 we examine the load on networks with more layers, namely with 7 equi-sized

layers (now the number of nodes is 3500). The results are alike the previous experiment, since

now the communicating pairs are spread more sparsely among the set of nodes.

4.5.4.4 Network load in networks with non equi-sized layers

Finally, in Figure 4.21 we examine the network load on when the layers differ in their size. The

setting is as the original one, but we have networks with 4 layers, and the adjacent layers differ

in the number of nodes by 20%, (the total number of nodes is 2184). The difference in queue

lengths is that we observe an increase in the number of nodes with moderate queue size, because

some CDS nodes which belong to layers with less nodes are selected for message routing.
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4.5.5 Results with skewness-varying topologies

Here we evaluate the efficiency of the competing algorithms when considering networks whose

topologies and weight skewness settings varying across a range of settings. Each multilayer

network is composed by 4 layers, each one of them containing 500 nodes (mean degree = 6). In

Table 4.2 we present for the three different settings of the topology skewness (Low, Medium, and

High) the values of the respective parameters of interest.

In Figures 4.22–4.24 the results concern the case where the skewness is towards high degree

nodes, and in Figures 4.25–4.27 the results concern the case where the skewness is towards low

degree nodes. The generic observation is that the performance differences between competitors
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remain almost stable regardless of the topology and weight skewness. This justifies the fairness

of the settings we used in our earlier experimentation.

TABLE 4.2. Experimentation parameters values.

Topology Skewness sdegree slayer snode

Low 0.1 0.1 0.1

Medium 0.5 0.5 0.5

High 0.9 0.9 0.9

4.5.5.1 Skewness to high degree nodes

In Figure 4.22 we evaluate the impact of the various settings of the topology and weight skewness

on the performance of the competing algorithms regarding the size of the CDS when skewness

is towards high degree nodes. The first observation is that the size of the CDS increases for

larger settings of the topology skewness with respect to the same weight skewness setting. That

is something we expected to happen as larger settings of the topology skewness result to non

uniform distribution of the interlinks among the mlNetwork layers, the appearance of some hub

nodes in the mlNetwork and consequently drives to more per layer nodes selected for the CDS

in order to guarantee the network connectivity.
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FIGURE 4.22. Algorithms performance (CDS size) with skewness to high degree nodes.

The second observation concerns the impact of the weight skewness on the size of the CDS

with respect to the same topology skewness settings and should be considered in combination with

the respective results of Figure 4.23. To elaborate, note that the weight skewness has negligible

impact on the size of the CDS for the same topology skewness settings. That is happening because

the algorithms decide about the CDS primarily based on the existing network topology (establish

network connectivity). The residual energy is taken into account only when there is some coverage
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FIGURE 4.23. Algorithms performance (min energy) with skewness to high degree
nodes.

redundancy between the mlNetwork nodes(establish network connectivity first and then strive

to substitute the less energy efficient nodes). This observation justifies the case in Figure 4.23

where the mean per network node minimum relay node energy decreases for larger settings of

the weight skewness as larger settings of the weight skewness result to less uniform distribution

of the weights in the mlNetwork and consequently to the selection of some less energy efficient

nodes in the CDS.
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FIGURE 4.24. Algorithms performance (relay node set cardinality) with skewness to
high degree nodes.

Finally, in Figure 4.24 we observe that the weight skewness has negligible impact on the

mean per network node size of the relay node set which is justified by the fact that each

algorithm strives for the minimum possible per network node relay node set as this guarantees

smaller volume of broadcast message transmissions in the network. We observe also that for
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larger settings of the topology skewness the mean per network node cardinality of the relay

node set decreases which is justified by the larger CDS with these settings and thus the greater

coverage capability of the selected relay nodes.
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FIGURE 4.25. Algorithms performance (CDS size) with skewness to low degree nodes.

4.5.5.2 Skewness to low degree nodes

In Figure 4.25 we evaluate the impact of the various settings of the topology and weight skewness

on the performance of the competing algorithms regarding the CDS when the skewness is towards

low degree nodes. The observations of Figure 4.22 regarding the size of the CDS when using

larger settings of the topology skewness still apply. Nevertheless, the performance of both E2CLB

and E2MLB worsens compared to the respective performance of EUCLB and E2WDB. That is

because of the attributes of the mlNetwork; i.e low degree nodes take priority over high degree

nodes in getting the interlinks which makes them good choices for the CDS. However, the reduced

coverage of the low degree nodes in combination with the residual energy of the participating

nodes in the CDS which we should take into consideration explains the larger CDS of EUCLB

and E2WDB. All in all, that is acceptable to happen as long as both E2CLB and E2MLB create

energy efficient CDSs.

In Figure 4.26 we evaluate the impact of the various settings of the topology and weight skew-

ness on the performance of the competing algorithms regarding the mean per network node min-

imum relay node energy when the skewness is towards low degree nodes. The observations of

Figure 4.23 still apply; i.e the mean per network node minimum relay node energy decreases

for larger settings of the weight skewness. Moreover, the relative performance among competing

algorithms compared to when the skewness is towards high degree nodes still apply except for

E2WDB which presents worse performance by EMCDS.

Finally, in Figure 4.27 we observe that the weight skewness has negligible impact on the
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FIGURE 4.26. Algorithms performance (min energy) with skewness to low degree nodes.

1.
9

1.
9

1.
9

1.
9

1.
9

1.
8

1.
8

1.
8

1.
8 1.
82.
2

2.
2

2.
2

2.
2

2.
35.

9

5.
9

5.
8 6.
0

5.
9

2.
0

2.
1

2.
1

2.
1

2.
1

2.
1

2.
1

2.
1

2.
1

2.
1

2.
0

2.
0

2.
0

2.
0

2.
02.
3

2.
3

2.
4

2.
3

2.
46.
4

6.
4

6.
5

6.
4

6.
4

2.
2

2.
2

2.
2

2.
2

2.
2

2.
4

2.
4

2.
3

2.
4

2.
4

2.
3

2.
3

2.
3

2.
3

2.
32.
6

2.
6 2.
6

2.
6

2.
6

7.
1

7.
0

7.
0

6.
9

7.
0

2.
5

2.
5

2.
5

2.
5

2.
5

2

6
7  E2CLB  E2MLB  E2WDB  EMCDS  EUCLB

2

6
7  E2CLB  E2MLB  E2WDB  EMCDS  EUCLB

0.1 0.3 0.5 0.7 0.9

2

6

7

H
ig

h 
Sk

ew
ne

ss
To

po
lo

gy
M

ed
iu

m
 S

ke
w

ne
ss

To
po

lo
gy

Lo
w

 S
ke

w
ne

ss
To

po
lo

gy

R
el

ay
 N

od
e 

Se
t C

ar
di

na
lit

y 
(p

er
 n

et
w

or
k 

to
po

lo
gy

)

Weight Skewness

 E2CLB  E2MLB  E2WDB  EMCDS  EUCLB

FIGURE 4.27. Algorithms performance (relay node set cardinality) with skewness to
Low degree nodes.

mean per network node size of the relay node set. We observe also that for larger settings of

the topology skewness the mean per network node cardinality of the relay node set decreases

which is justified by the larger CDS with these settings; i.e the larger CDS is a by product of

larger relay node sets which results in increased likelihood that a less efficient relay node to be

substituted by an energy efficient relay node.

4.5.6 Pruning Rule k efficiency

In this section we evaluate the efficiency on using more connectivity information in reducing the

size of CDS during the pruning phase.
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4.5.6.1 Impact of topology density

The results presented in Figure 4.28 study the impact of increasing node degree on the perfor-

mance measures when using 2-hop information, and Figure 4.29 when using 3-hop information

for all algorithms but EMCDS. The results are intuitive and confirm the findings of the main

chapter. Denser connectivity (higher average degree) means smaller CDS, equal or larger re-

lay node sets per node. Utilizing more information, i.e., 3-hop information can decrease these

quantities by a factor of 2 or 3. Champions algorithms are as before.
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FIGURE 4.28. Impact of network density on the performance of each algorithm by using
2-hop neighborhood information.
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using 2-hop neighborhood information for EMCDS and 3-hop neighborhood infor-
mation for the rest.

65



CHAPTER 4. ENERGY-AWARE BACKBONES FOR MULTILAYER AD HOC NETWORKS

4.5.6.2 Impact of network diameter

The results shown in Figure 4.30 investigate the impact of increasing diameter on the performance

of the competitors when exploiting 2-hop information or 3-hop information (Figure 4.31). The

performance patterns are similar to those reported in the previous pair of graphs. Using such

rich imformation every algorithm can improve its performance concerning CDS size 3 times from

small and medium diameter valus, and 2 times for larger diameter values.
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4.5. PERFORMANCE EVALUATION

4.5.6.3 Impact of number of layers

The results shown in Figure 4.32 investigate the impact of increasing the number of network

layers on the performance of the competitors when exploiting 2-hop or 3-hop information (Fig-

ure 4.33). Here the performance gains are smaller and every competitor improves itself at a factor

of 2 concerning CDS size, and at a factor of 1.5 concerning relay set size and residual energy.

2.
3 2.
7 2.
8 3.
0 3.
2

2.
2 2.
6 2.
7 3.
0 3.
1

3.
0 3.
5 3.
7 4.
0 4.
25.
0 5.
4

5.
5 5.
7

5.
9

3.
0 3.
6 3.
7 4.
0 4.
1

0.
40

6

0.
36

0

0.
35

2

0.
33

7

0.
33

30.
39

4

0.
35

4

0.
33

6

0.
32

4

0.
31

8

0.
32

3

0.
29

1

0.
28

2

0.
27

4

0.
26

9

0.
40

6

0.
39

2

0.
38

4

0.
40

2

0.
38

4

0.
32

2

0.
28

8

0.
28

2

0.
27

3

0.
26

7

36
4 60

8 80
3

10
25 14
66

36
7 61

7 80
6

10
33 14
54

36
5 59
1 78
9

10
14 14
41

29
9 46
4 61
0 77
2 10
75

35
9 60

1 79
5

10
09 14
47

2

3

4
5
6  E2CLB  E2MLB  E2WDB  EMCDS  EUCLB

C
D

S 
si

ze
M

in
im

um
 re

la
y 

no
de

En
er

gy
 

R
el

ay
 N

od
e 

Se
t

C
ar

di
na

lit
y

0.3

0.4
 E2CLB  E2MLB  E2WDB  EMCDS  EUCLB

pe
r n

et
w

or
k

pe
r n

et
w

or
k 

no
de

pe
r n

et
w

or
k 

no
de

2 3 4 5 7

256

512

1024

 E2CLB  E2MLB  E2WDB  EMCDS  EUCLB

Number of Layers

FIGURE 4.32. Impact of the number of network layers on the performance of each
algorithm when using 2-hop neighborhood information.
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CHAPTER 4. ENERGY-AWARE BACKBONES FOR MULTILAYER AD HOC NETWORKS

4.5.6.4 Impact of increasing layer size

The results shown in Figure 4.34 investigate the impact of increasing the number of network lay-

ers on the performance of the competitors when exploiting 2-hop information or 3-hop information

(Figure 4.35). The results are alike those observed in the previous pair of plots.
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FIGURE 4.34. Impact of increasing the layer size on the performance of each algorithm
when using 2-hop neighborhood information.
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FIGURE 4.35. Impact of increasing the layer size on the performance of each algorithm
when using 2-hop neighborhood information for EMCDS and 3-hop neighborhood
information for the rest.
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4.6. CONCLUSION

4.6 Conclusion

Multilayer wireless ad hoc networks arise in several modern settings and pose some new chal-

lenges around effective and efficient communication capability among their entities. This chapter

investigates the problem of constructing energy-efficient backbones for such network types utiliz-

ing the notion of connected dominating sets (CDS). Improving on from our earlier work, which

proved the insufficiency of traditional algorithms for addressing this problem, we proposed a

new centrality measure, namely EclPCI which can identify energy-rich and at the same time

“central” to the topology nodes. Then, the chapter developed a distributed algorithm, namely

E2CLB for calculating an energy-efficient connected dominating set based on the proposed

centrality measure.

The proposed algorithm was evaluated analytically by establishing its computational and

communication complexity, and experimentally in an exhaustive manner. The experimental

evaluation was done with respect to independent parameters that quantify the structure of the

topology, i.e., density and shape (diameter), the size of the multilayer network in terms of the

number of nodes and layer. The performance measures quantified the overall (and per layer)

size of the dominating set, and the residual energy. Even though there is no prior related work

on this subject, we employ as competitors six other algorithms; some of them stem from the

present work and others are straightforward extensions of traditional well-known algorithms.

In all experiments, the proposed E2CLB proved to be the winning algorithm in the sense that

it could trade a very small increase or no increase at all at the dominating set size in order to

offer significant gains in terms of residual energy of the CDS nodes. Interesting extensions of

the present work are the investigation of this problem for unidirectional connectivity or the

incremental maintenance of the CDS in cases of topology changes.
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DISTRIBUTED ALGORITHMS FOR MULTILAYER CONNECTED EDGE

DOMINATING SETS

5.1 Introduction

In this chapter we investigate the problem of distributed computation of a resilient network

overlay for communication link monitoring in the context of multilayer ad hoc networks.

The distributed nature of modern networks and the limited processing power of networked

sensors and embedded systems used in Internet of Things (IoT) applications has led to new

security vulnerabilities [14]. Intruders can inject malicious communications between any two

networked elements without aiming to have the message propagated to any further target.

The increasing variety, capability, and complexity of network elements has increased this risk.

Furthermore, the evolution of these networks leaves them vulnerable to errors and compatibility

issues when new elements are added to the network. While these issues may be sensed by the

communicating network elements, their limitations do not allow them to compute remedies,

necessitating communication to elements with more processing power. In this work, we present a

framework for monitoring network failures using connected edge dominating sets in multilayer

networks, and then we provide efficient distributed algorithms for their computation.

Related publication [J1]: Dimitrios Papakostas, Soheil Eshghi, Dimitrios Katsaros, Leandros Tassiulas. “Dis-
tributed Algorithms for Multilayer Connected Edge Dominating Sets”, IEEE Control Systems Letters, vol.3, pp.31-
36, January, 2019.

Related publication [C1]: Dimitrios Papakostas, Soheil Eshghi, Dimitrios Katsaros, Leandros Tassiulas. “Dis-
tributed Algorithms for Multilayer Connected Edge Dominating Sets”, Proceedings of the 57th IEEE Conference
on Decision and Control (CDC), Miami Beach, FL, USA, December 17-19, 2018.
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CHAPTER 5. DISTRIBUTED ALGORITHMS FOR MULTILAYER CONNECTED EDS

Consider the case where we wish to be able to monitor all the communication taking place

among nodes of a wireless ad hoc network such as the one shown in Figure 5.1. It is assumed that

any pair of nodes can initiate an exchange of packets and the routing may follow any path of the

network, e.g., not only the shortest-path route between the communicating nodes. In principle,

this task requires us to recognize a set of edges (communication links) such that every other

edge is adjacent to at least one edge belonging to this set; then, by placing monitoring devices

at the endpoints of each edge belonging to this set we can achieve our goal. Such a set of edges

is termed an Edge Dominating Set (EDS) in graph-theoretic terms. Due to cost considerations,

we are interested in identifying such sets with minimum cardinality, i.e., we seek Minimum

Edge Dominating Set (MEDS). However, as it is often the case for ad hoc networks, the set of

monitoring devices must be able to output any intercepted information; therefore the MEDS

must be connected [Minimum Connected Edge Dominating Set (MCEDS)], and, moreover, must

be computed in a distributed fashion. Looking at Figure 5.1, we can confirm that the set of blue

edges constitutes a MCEDS, and also the set of green edges constitutes a MCEDS.

C1

C2 C5

C3

C4

S10

S9

S8

S6

S7S5
S1

S4S3

S2

FIGURE 5.1. Two minimum connected edge dominating sets: the blue (with square
marks) includes one inter-layer edge, and the green (with circular marks) includes
two inter-layer edges.

The concept of network layers can capture the diversity in the capabilities of network elements,

as well as their differing roles. For example, although traditional ad hoc networks are treated

as single layer networks, military tactical ad hoc networks [92] are considered to be multilayer

networks due to the existence of different types of units (infantry, vehicles or airborne units),

where nodes belong to different layers, i.e., groups. For instance, in Figure 5.1 the node set C1–C5

comprise one layer and nodes S1–S10 comprise another layer.

Finding an MCEDS for multilayer networks is somewhat more complicated than calculat-

ing MCEDS for single layer networks, both for technical reasons (cf. Theorem 5.2), and for
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5.2. THE MCMCEDS PROBLEM

application-specific reasons, e.g., robustness. Looking again at the blue and green MCEDS’s in

Figure 5.1, we observe that the green one includes two edges that connect the different layers

(inter-layer edges), whereas the blue only has one such edge. Increasing the number of inter-layer

edges can improve the network’s resiliency to failures in any particular layer [92].

In this chapter, we cast our monitoring problem for multilayer networks, which entailed

finding an MCEDS in a distributed manner containing many inter-layer edges, into a new form

of generic domination problems. We name this problem the Multi-Colored MCEDS (MCMCEDS)

problem, and we will describe it here in terms of calculating the minimum multi-colored edge

dominating set. The framework and the algorithms proposed can be used for efficiently detecting

and avoiding interference conditions in large wireless IoT networks, or even in more specialized

setting such as those enabling D ynamicFrequencySelection(DFS) where radar signals must

be detected and protected against interference from 5GHz radios; DSs concepts have been used

in the past for monitoring problems [54, 84].

The contributions of the present chapter are as follows:

• It introduces the novel problem of finding a MCEDS in multilayer networks with the

additional goal of including many inter-layer links into the EDS (§5.2). This problem

extends ideas related to those developed in [113].

• It analyzes its computational complexity (§5.3).

• It proposes three heuristic distributed algorithms for it (§5.4).

• It proves an analytic result that relates the cardinality of an Independent Edge Dominating

Set (IEDS) to the cardinality of a corresponding Connected Edge Dominating Set (CEDS)

(§5.4.2).

• It conducts a performance evaluation of the proposed algorithms against two baseline

competitors (§5.5).

We define the MCMCEDS problem in §5.2. We then present results on the complexity of

MCMCEDS computation in §5.3, and discuss our approaches to computing heuristics and their

rationale §5.4. We present extensive simulation results in §5.5. We survey related work on §5.6

and finally, in Section 5.7 we conclude the present work.

5.2 The MCMCEDS problem

5.2.1 Edge domination in traditional settings

Firstly, we will provide some basic definitions on dominating sets [54] before we formulate this

chapter’s problem.
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Definition 5.1. An EDS(G) of a network (G,E) (G is the set of nodes, and E is the set of edges) is

any subset of E such that any edge e ∈ E is either a member of EDS(G) (it is a dominating edge)

or it has one common endpoint with at least one dominating edge (it is a dominated edge).

Let xe be an indicator variable representing whether e ∈ E is included in EDS(G). Therefore,

Definition 5.1 is equivalent to saying that for each e ∈ E: xe+∑
e′∈N(e) xe′ ≥ 1, where N(e) is the set

of neighboring edges of edge e (i.e., those with one common endpoint). Note that in the line-graph

L(G) of graph G, in which every edge is replaced with a vertex and vice versa, and the incidence

relationship between edges and vertices is preserved [25], an edge dominating set in G, EDS(G),

is translated to a DS(G).

Definition 5.2. An IEDS(G) of a network (G,E) (also referred to as a maximal matching [123])

is any EDS of G such that no two edge dominators share an endpoint.

Definition 5.3. A CEDS(G) of a network (G,E) is any EDS of G such that the set of dominating

edges along with their endpoints comprise a connected network.

The line-graph (L(G)) preserves connectivity [25], so in translation, CEDS(G) becomes a

CDS(G) of the line-graph.

Definition 5.4. A MCEDS(G) of a network (G,E) is any CEDS of G with the additional property

that it contains the least possible number of dominating edges.

At this stage, the link between the CEDS and its equivalent in the line-graph is broken:

an MCEDS(G) will translate to a CDS with the minimum number of nodes, and not edges, in

the line-graph. Therefore, the problems of finding the MCDS [134] and the MCEDS are not

linked in a straightforward manner. So an MCDS in L(G) will be a CEDS in G, but there is no

guarantee that its cardinality will be minimal.

5.2.2 Edge domination in multi-layered network settings

Definition 5.5. A multilayer network comprised of n layers is a pair (GML,EML), where GML =
{G i, i = 1, . . . ,n} is a set of networks (G i,E i), as defined earlier, and EML = {E i, j ⊆ G i ×G j; i, j ∈
{1, . . . ,n}, i 6= j} is a set of inter-layer edges.

Definition 5.6. A MCEDS of a multi-layered network MCEDS(GML) includes the minimum

set of edges such that their induced subgraph is connected and edges not in this set are adjacent to

at least one edge within it.

In Figure 5.1, G1 = {Si, i = 1, . . . ,10}, G2 = {Ci, i = 1, . . . ,5}, and EML is the set of all edges

connecting them e.g., 〈S1,C1〉.

Definition 5.7. An edge-multicolored multi-layer network (see Figure 5.2) is a multi-layer network

with these two properties:
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p-1) all edges e whose endpoints both belong to a single (any) layer, i.e., e ∈ E i,∀i ∈ {1, . . . ,n} have

the same color (black). E.g., black edges in Figure 5.2.

p-2) all edges l whose endpoints belong to different layers i.e., l ∈ E i, j ⊆G i×G j, i, j ∈ {1, . . . ,n}, i 6= j

will have the same color, which is different from the color of edges c ∈ Ex,y ⊆Gx ×G y, x, y ∈
{1, . . . ,n}, [x, y] 6= [i, j]. E.g., red edges in Figure 5.2.

L2

L3

L1

FIGURE 5.2. A multicolored multi-layer network with 3 layers (L1, L2, L3).

Definition 5.8. A MCMCEDS of a multilayer network MCMCEDS(GML) is an MCEDS(GML)

with the maximum number of colorful (i.e., non-black) edges.

Problem 5.1 (dist-MCMCEDS). We seek to find an MCMCEDS(GML) for a multi-layer network

GML in a distributed fashion, i.e., having only knowledge of the k-hop neighborhood around each

node. Here, we set k = 2.

5.3 Complexity of the MCMCEDS problem

Theorem 5.1. The MCMCEDS problem is NP-hard.

Proof. Assume we have a single-layer graph G = (V ,E) and we seek to find its MCEDS. Now,

create a 2-layer network (GML,EML), where GML = {G i, i = 1,2} have the same vertices as V , and

a set of inter-layer edges EML = {E i, j ⊆G i ×G j; i, j ∈ {1, . . . ,n}, i 6= j} by assigning one edge in E

to EML and the rest to E1, and E2 uniformly at random. If MCMCEDS for such a (GML,EML)

was not NP-hard, we could use it at most |E| times (varying the edge assigned to EML) to find a

solution to MCEDS, a known NP-complete problem [87, p. 102, Lemma 4.4.3]. a
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5.4 Heuristics for the MCMCEDS problem

Since our problem is NP-hard, we wish to design heuristic algorithms that can encapsulate

the idea of including as many inter-layer edges as possible into the EDS. In our previous

work [12, 92] we have introduced the family of the PCI centrality measures for multilayer

networks, namely mlPCI and clPCI, whose purpose is to assign a value to each node which

depicts its connectivity both to its layer and to other layers. In [92] we used clPCI and mlPCI

for the purpose of establishing a V BN for multilayer ad hoc networks based on the calculation

of a node dominating set. Note that a simple application of these algorithms to create a CDS

is insufficient, as it may leave some edges “undominated”. We will not repeat the definitions,

but instead give the distributed algorithms for the calculation of the edge dominating sets, and

calculate their computational complexities as a function of ∆, the maximum node degree in the

network.
Algorithm 5.1: IEDS

postcondition :Completed IEDS election process
remarks :multilayer network G = (V ,E) where V and E are vertex & edge set, M(u) /

M(w
edge
i, j ) : True(T) / False(F) indicator for node u / edge wedge

i, j being a DS node /

edge, Sedge
(u) : edges incident to u.

1 Identification of 1-hop (N(u)) and 2-hop (N2(u)) neighborhood via distributed beaconing and
calculation of clPCI indexes of the nodes;

2 Build local edge adjacency matrix Emat
(u) with N(u) & N2(u);

/* ∃ e(i, j) ∈ E ⇐⇒ i ∈ N( j) ∧ j ∈ N(i) */

3 Add weights wedge
i, j = clPCI(i)∗ clPCI( j) to Emat

(u) ;

4 Build Sedge
(u) = wedge

u,l1
, . . ., wedge

u,lm
| wedge

u,lk
∈ E, lk ∈ N(u) ∀k≤m;

5 if ∃ wedge
u,lk (1≤k≤m) ∈ Sedge

(u) not attached to DS edge then
6 Select the edge with the largest weight and set M(u) = T;
7 M(wedge

u,lk (1≤k≤m)) = T; /* EDS election */

8 Announce status change;

9 end
10 Collect all edges (across the network) with a status=T;

5.4.1 PCI approaches

In Algorithm 5.1, lines (1)–(9) are distributed and executed by every node u in order to select

which of the edges incident on it (i.e., on u) will be included in the IEDS. The selection is based

on such a multilayer centrality measure. Since the centrality measure has been defined for

nodes and not for edges, we use the product “value” of each edge’s end-nodes to define the edge’s

value. The fictitious operation of line (10) unites every node’s selection in order to construct the

final IEDS. The proof of algorithm’s correctness, in the sense that it constructs an IEDS is

very similar to that reported in [37, Theorem 4.2] and thus it will be omitted for all algorithms

presented.
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Proposition 5.1. The computation complexity of IEDS is O(∆2) in the worst case.

Proof. The worst case computation complexity of IEDS selection is when a node u has ∆

neighbors and each one of them has ∆ neighbors too. During the build-up of the edge adjacency

matrix, node u needs to compare its 1-hop and 2-hop neighbor set with ∆2 neighbors in the

worst case, and the neighbor set comparison has a O(∆) complexity. The same computation cost

applies to the population of the edge adjacency matrix node with the weight value wedge
i, j of each

respective edge. The computation complexity of electing an edge as a DS edge is O(∆2), as node u

needs to compare its 1-hop neighbor set with ∆ neighbors in the worst case, and the neighbor set

comparison has a O(∆) complexity. a

Algorithm 5.2: MLEDS#1
precondition :Completed IEDS election process
postcondition :Completed MCEDS election process
remarks : R(u) : relay node set of node u,M(u) / M(w

edge
i, j ) : True(T) / False(F) indicator for

node u / edge wedge
i, j being a DS node / edge.

1 If M(u) = F then Return; /* not a DS node */

2 repeat
3 Add in R(u) a node l ∈ N(u) with the largest clPCI index that covers at least one new node in

N2(u);
4 M(l) = T; M(wedge

u,l ) = T; /* CEDS process */

5 until each node in N2(u) is covered by node(s) in R(u)
6 Announce status change;
7 Build Sedge

(u) = wedge
u,l1

, . . . wedge
u,lm

| wedge
u,lk (1≤k≤m) ∈ E, lk ∈ N(u), M(lk) = T;

8 Sort Sedge
(u) in increasing order of the wedge weights.

9 repeat
10 if wedge

u,lk (1≤k≤m) is dominated by connected wedges ∈ Emat
(u) with larger weight then

11 M(wedge
u,lk (1≤k≤m))=F; /* EDS Pruning */

12 Announce status change;

13 end
14 until each wedge

u,lk (1≤k≤m) ∈ Sedge
(u) has been considered

15 Collect all edges (across the network) with a status=T;

The second algorithm, namely MLEDS1 (Algorithm 5.2), is the first that computes a CEDS;

it starts from an IEDS and connects it by adding edges that are bounded by DS nodes of the

IEDS and 1-hop relay nodes of them (those with the largest clPCI index) who collectively cover

their 2-hop neighborhood. Steps (1)–(14) are distributed and executed by each node u. Since

adding edges in a distributed manner may result in redundant edge selection, MLEDS1 has a

pruning phase (line 11). Line 15 is fictitious in order to fulfill the postcondition, i.e., it need not

be run in practice.
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Proposition 5.2. The computation complexity of MLEDS1 is O(∆3) in the worst case.

Proof. In order to connect the IEDS, each node u needs to check the status of its 1-hop neighbor

set, which has a O(∆) complexity. The computation complexity of the pruning phase is O(∆3),

because a node u needs to calculate the coverage capability of a connected graph composed of both

1-hop and 2-hop neighbors in order to decide if it will act as a DS node or not. Thus, each node u

compares its neighbor set with ∆2 neighbors in the worst case, and the neighbor set comparison

has a O(∆) complexity. a

An improved version of the previous algorithm (MLEDS2) applies the more sophisticated

pruning technique developed in [93] in order to reduce the size of the resulting connected edge

dominating set. We omit its pseudocode and computational complexity here.

Algorithm 5.3: MLEDS#3
postcondition :Completed MCEDS election process

1 Identification of 1-hop (N(u)) and 2-hop (N2(u)) neighborhood via distributed beaconing and
calculation of clPCI indexes of the nodes;

2 repeat
3 Add in R(u) a node l ∈ N(u) with the largest clPCI index that covers at least one new node in

N2(u);
4 until each node in N2(u) is covered by node(s) in R(u)
5 Announce R(u);
6 if selected as a relay node then
7 M(u) = T; Announce status change;
8 Build Sconstrained

(u) = u1,u2, . . . ,un | uk (1≤k≤n) ∈ N(u)∧N2(u), M(uk (1≤k≤n)) = T,
clPCI(u) < clPCI(uk (1≤k≤n));

9 if Sconstrained is subject to N(u)⊂ N(u1)∪N(u2)...∪N(un) and
u1,u2, ...,un form a connected graph then

10 M(u) = F; Set M(wedge
i, j ) = F any edge wedge

i, j incident to node u; /* CDS Pruning */

11 Announce status change; Return;

12 end
13 Build Sedge

(u) = wedge
u,l1

, wedge
u,l2

, . . . wedge
u,lm

| wedge
u,lk (1≤k≤m) ∈ E, lk ∈ N(u), M(lk) = F;

14 if ∃ wedge
u,lk (1≤k≤m) ∈ Sedge

(u) adjacent to a non DS edge and that edge is not incident to a DS node

then
15 M(wedge

u,lk (1≤k≤m))=T; /* MCDS to MCEDS */

16 Announce status change;

17 end
18 end
19 Collect all edges (across the network) with a status=T;

Finally, Algorithm 5.3 first creates a CDS and then computes a CEDS through the addition

of edges. Note that for such a node dominating set, all nodes are within one-hop of a selected node,

so if we can judiciously add such connecting edges (between selected and non-selected nodes), we

will have a CEDS. Steps (1)–(18) are executed in a distributed fashion by every node u.

78



5.4. HEURISTICS FOR THE MCMCEDS PROBLEM

Proposition 5.3. The computation complexity of the relay node set election process is O(∆3).

Proof. The prioritization phase involves neighbor sorting based on clPCI value, which is

a O(∆∗log∆) operation. The worst case construction phase results when a node u has ∆ neighbors

and each one of them contributes ∆ nodes to the coverage of the 2-hop neighborhood of u. In

this case, node u needs to run once over its neighbor set of size O(∆) and ‘erase’ those nodes of

the 2-hop neighborhood of u (which has maximum size O(∆2)) covered by the specific neighbor;

this operation costs O(∆3). a

Proposition 5.4. The computation complexity of the pruning phase is O(∆3).

Proof. A relay node u needs to check its 1-hop and 2-hop neighbors in order to decide if it will

act as a relay node or not. Thus, each relay node u compares its neighbor set with ∆2 neighbors

in the worst case, and the neighbor set comparison has a O(∆) complexity. a

Proposition 5.5. The computation complexity of transforming the MCDS to MCEDS is O(∆2)

in the worst case.

Proof. The worst case computation complexity of the transformation process of theMCDS

to MCEDS is when a non-DS node u has ∆ non-DS neighbors and each one of them has ∆

neighbors too. In such case node u needs to compare its 1-hop with ∆ neighbors in the worst case,

and the neighbor set comparison has a O(∆) complexity. a

5.4.2 On the size relationship between IEDS and CEDS

Here we establish the relationship between the cardinality of an IEDS and the cardinality of its

corresponding1 CEDS.2.

Theorem 5.2. Any IEDS of size |IEDS| can be turned into a CEDS by adding 2× |IEDS|
additional edges to the IEDS in the worst case.

Proof. We provide the proof sketch. Firstly, we will state a corollary that results immediately

from the independent edge domination property, and then we will define the concept of neighbor-

ing dominators of an edge dominator ev.

Corollary 5.1. In any IEDS, the closest (in terms of hops) edge dominator to any edge dominator

can be found one or two hops away, i.e., ≤ 2 other edges are located in between these two edge

dominators.

1i.e., when IEDS ⊂ CEDS.
2Note that the claims of the theorem do not imply the relationship between the cardinality of the IEDS and that

of the graph’s edge set.
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Definition 5.9. A neighboring edge dominator eu of an edge dominator ev is any edge dominator

which is at most two hops away from ev.

An edge dominator ev can have more than one neighboring edge dominator, but the exact

number depends on network topology. Together, Corollary 5.1 and Definition 5.9 mean the

topology between an edge dominator and its neighboring edge dominators must be one of the

following:

C1 An edge dominator has at least one neighboring edge dominator one hop away. (e.g., edge

dominator 〈1,2〉 is one hop away from 〈7,9〉 in Figure 5.3).

C2 An edge dominator has at least one neighboring dominator two hops away, and no domina-

tors in one hop distance (edge dominator 〈1,2〉 from 〈4,5〉 in Figure 5.3 (LEFT)).

7

83 6

54

2

91

FIGURE 5.3. (LEFT) An IEDS (blue thick edges) which exhibits all possible relative
locations of neighboring edge dominators. For instance, edge dominator 〈1,2〉 is
one hop away from 〈7,9〉 and two hops away from 〈4,5〉. (RIGHT) An IEDS (blue
thick edges) which requires the maximum number of edge dominatees that must
become dominators in order to get a CEDS. (Note that the graph extends infinitely
to the left and to the right in the same pattern.)

If [C1] holds for some dominator ev, then we need to include one more edge dominatee into the

EDS in order to connect ev to its nearer neighboring dominator. If [C2] holds for some dominator

ev, then we need to include two more edge dominatees into the EDS in order to connect ev to

its nearer neighboring dominator. Thus, in the worst case, for every edge dominator, we need

to include two more edges into the EDS in order to make it a CEDS. The worst case occurs for

IEDS’s as shown in Figure 5.3 (RIGHT). a
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5.5 Numerical results

We performed an evaluation of the algorithms in MATLAB. Since there is no prior work on our

topic, we use as baseline algorithm (referred to as BASE) the very popular one proposed in [48] for

node dominating sets, which we augment with a greedy heuristic to construct a CEDS. We have

also developed a generator [12] to produce multilayer networks. We use the size (in percentages)

of the resulting (connected) EDS as the performance measure. The champion algorithm will be

the one that calculates the smallest size CEDS. The default value for average node degree is set

to 10, for network diameter it is set to 8, and for the number of layers it is set to 4. Each figure

encompasses four sets of plots aligned vertically, corresponding to four different settings for the

number of nodes in each of the layers.

In Table 5.1 we present the impact of average network degree and diameter on the competitors’

EDS size for default settings, and also on the number of inter-layer links included in the EDS as

a resilience measure.

TABLE 5.1. Comparison of proposed algorithms to a baseline algorithm. For each
competitor: the left column is the percentage of EDS size w.r.t. number of edges,
and the right column is the percentage of inter-layer edges w.r.t. EDS size.

degree vs. (EDS size, # inter-layer links)
deg MLEDS# 1 MLEDS# 2 MLEDS# 3 BASE IEDS

3 0.54 0.66 0.34 0.45 0.29 0.42 0.580.39 0.140.19
6 0.34 0.61 0.23 0.51 0.21 0.53 0.420.25 0.110.21
10 0.19 0.37 0.15 0.46 0.15 0.49 0.260.21 0.070.22
15 0.11 0.25 0.11 0.47 0.11 0.49 0.150.18 0.050.21
20 0.09 0.21 0.08 0.48 0.08 0.53 0.120.12 0.040.23

diameter vs. (EDS size, # inter-layer links)
diam MLEDS# 1 MLEDS# 2 MLEDS# 3 BASE IEDS

3 0.21 0.39 0.21 0.48 0.16 0.51 0.250.29 0.080.21
5 0.32 0.54 0.32 0.47 0.20 0.50 0.360.33 0.100.20
8 0.33 0.57 0.33 0.45 0.21 0.47 0.390.38 0.100.20
12 0.46 0.64 0.46 0.43 0.25 0.44 0.510.41 0.120.19
17 0.55 0.66 0.55 0.45 0.32 0.42 0.620.42 0.150.20

We can see that the proposed algorithms succeed in including many inter-layer edges in

the final CEDS; almost half of CEDS edges are inter-layer ones. MLEDS3 in particular has

stable behavior with respect to changes in network degree or diameter. On the other hand, BASE

is the worst algorithm from the perspective of EDS size and this is consistent across all our

experiments and therefore we refrain from presenting its performance in the sequel.

Figure 5.4 shows the performance of the algorithms as the average degree varies between 3

and 20. The immediate observation is that when the degree increases, the size of the EDS

decreases for all competitors, which is to be expected given that in dense topologies a single
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edge can dominate more edges. Also as expected are the observations that larger networks have

relatively larger EDS’s, as they must be sparser given that the average degree is fixed, and

that the IEDS algorithm leads to the smallest EDS, as it does not have to ensure connectivity.

Among the algorithms that created connected EDS, MLEDS3 is the best performing algorithm,

creating an EDS twice the size of that calculated by IEDS which combined with Theorem 5.2

confirms that it is a good solution to our problem.
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FIGURE 5.4. Impact of the average node degree on the size of CEDS.

Figure 5.5 shows the performance of the algorithms as the network diameter varies between 3

hops (so-called “bushy” networks) to 17 hops (‘long and skinny’ topologies). As expected, in “bushy”

topologies, the resulting EDS’s are smaller, whereas in the “long and skinny” topologies more

dominating edges are needed.
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FIGURE 5.5. Impact of the network diameter on the size of CEDS.
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As an analogy, in a star network (a “bushy” topology) a single edge can dominate all others,

whereas in a line topology with k connections, the connected edge dominating set has cardinal-

ity k−2. Again, the best performing algorithm MLEDS3 is around 10% better than the second

best algorithm on average. The performance gap reaches 25% for “longer and skinnier” topologies.

Figure 5.6 shows the performance of the algorithms as the number of layers varies. The

increase in the number of layers causes the topology to become more connected, and as a

consequence the size of the EDS reduces, but not as dramatically as when the diameter shrinks

or when the density increases. Again, MLEDS3 is the best performing algorithm.
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FIGURE 5.6. Impact of the number of layers on the size of CEDS.

5.6 Related work on MCMCEDS

The MCMCEDS problem, although novel per se, has connections to earlier work on finding

minimum (connected) edge dominating sets. The MEDS problem has been shown to be NP-

Complete in the single-layer case [139] in the centralized setting even for bipartite and planar

graphs of maximum degree 3. Furthermore, even finding a 7/6−approximation of the optimal

set has been shown to be NP-Hard [28]. The MCEDS problem has also been shown to be

NP-Complete [87, p. 102, Lemma 4.4.3].

MCMCEDS generalizes the plain (without any colors and any weights) EDS problem [139],

if we assume that all edges have the same color. However, MCMCEDS cannot be transformed

into the plain MCEDS problem with weights on edges [18] by assigning a uniform small weight

to all inter-layer edges, and a uniform large one to all intra-layer edges, as in this case we

might end up including all inter-layer edges into the dominating set simultaneously, which is not

necessarily the most efficient solution. This is significant; while a 3+ε approximation exists for

the weighted MCEDS problem [123], it will not apply to our MCMCEDS case. Problems related

to stratified domination in graphs [21, 24] ask for a coloring of nodes, but in MCMCEDS, the
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colors are provided as part of the input to the problem. Problems related to chromatic transversal

domination [85] are also not related to MCMCEDS for the same reason as stratified domination

(in our case the colors are part of the input, and we do not seek a node coloring) and additionally

because transversal domination demands that the dominating set’s nodes should necessarily

touch all color classes.

The problems most closely related to MCMCEDS are those reported in [113], where color

classes are given, but domination is defined such that all or none of the graph elements (edges in

our case) of a color class should be included in the dominating set. However, the MCMCEDS

formulation allows for the inclusion of any number of edges belonging to any color class; therefore,

the formulation is much more versatile (as compared to [113]) and encompasses a larger possible

set of MCEDSs from which to choose from.

5.7 Conclusions

Motivated by applications in traffic monitoring in diverse communication systems, we presented

distributed algorithms for the creation of connected Multi-colored Edge Dominating Sets in

multilayer graphs. After showing that the underlying problem is hard to solve, we showed that a

heuristic algorithm based on amending a connected node dominating set to create a connected

edge dominating set provides the best performance. While our heuristics performed well over a

range of scenarios, establishing approximability results for the MCMCEDS problem represents

an important line of future work.
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ENERGY-AWARE DISTRIBUTED EDGE DOMINATION OF MULTILAYER

NETWORKS

6.1 Introduction

In this chapter we further explore the opportunities of maximizing the resiliency of a

military multilayer ad hoc network by extending notions presented in some of our previous

works [92, 94]. Modern military battlefields consist of an increasing array of entities with

wireless communication and sensing capabilities. In [92], such heterogeneous allied systems

have been modeled as multilayer ad hoc networks, in which each layer represents a type of

battlefield entity (e.g., helicopters, UAVs, infantry); such multilayer tactical networks may arise

in other settings as well, e.g., [105]. Designing networks with high numbers of inter-layer links

immunizes the network to (possibly correlated) failures in any particular layer, allowing the

design of resilient network overlays for purposes of either network management/monitoring or

data forwarding, in the sense that the communication among different layers can not break easily

(accidentally or due to malicious attacks).

While the increased number of layers and inter-layer links increases the resilience of such

networks, it complicates network functions such as routing and scheduling. To accomplish these

tasks successfully in the long run, the network must be able to sense changes in topology, and

specifically link failures, efficiently, with the sensing system itself being resilient to such issues.

Related publication [S3]: Dimitrios Papakostas, Soheil Eshghi, Dimitrios Katsaros, Leandros Tassiulas. “Energy-
aware distributed edge domination of multilayer networks”, Paper submitted for publication.
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The sensed information gathered (and possibly aggregated) by such a network overlay can be

used in both centralized and decentralized control of the aforementioned network functions.

The problem of distributed computation of a resilient network overlay for communication

link monitoring in single layer ad hoc networks has been studied in the past, e.g., [68]; it is a

problem different from the traditional distributed approaches to ad hoc routing in that routing

algorithms are designed aiming at minimizing latency (thus seeking shortest-paths) or increasing

availability and preventing network choking (thus selecting multiple paths to destination).

The computation of a resilient network overlay for multilayer ad hoc networks is significantly

harder to address, especially using distributed algorithms, because of coordination failures which

can lead to loss of communication or over-dependence on a specific layer. A first effort towards

achieving the goal of building resilient overlays for multilayer ad hoc networks introduced the use

of custom-designed locally-computable centrality metrics [92]. Moreover, in [94] we proved that,

in the context of multilayer networks, finding a MCEDS with the additional goal of including

many inter-layer links into the MCEDS would improve its resiliency. However, neither the

aforementioned works nor any prior work has considered the energy limitations of network

entities in designing resilient overlays for link monitoring in multilayer ad hoc networks.

Even though some network entities might be energy-rich (e.g., vehicles) others can face severe

energy needs, e.g., sensors, UAVs. Recharging batteries may be very difficult for entities deployed

in a battlefield, as it is both time-consuming and detracts from attention to the mission at hand.

Therefore, the overlay should be built in such a way that all included entities have enough energy

to keep the overlay operational and connected for as long as possible. Such energy-aware overlay

creation is the goal of this chapter. We emphasize that, the current problem calls for solutions

that incorporate as many links among different layers as possible into the overlay with the goal

of increasing resiliency. Thus we decided to extend the notions presented in [94], i.e., describe

the problem in terms of calculating a CEDS, and take into consideration the energy state of each

network node.

As an example, consider the two-layer network shown in Fig. 6.1, with the layers representing

infantry and airborne units, and the node weights in parentheses denoting energy levels – the

network is comprised of nodes Si and Ci and the black (every link between nodes of the same layer)

and red links (every link between nodes of different layers). It is assumed that communications

between any two entities can traverse any path, and that monitoring the communications on an

edge requires that we monitor at least one node of its end vertices.

All in all, our goal is to find a CEDS in such networks that is small in size, has many inter-

layer links, and which is energy-aware, in a distributed manner. Each of these goals, which are

driven by practical concerns, impose limitations on the set of acceptable network overlays, leading

to possible trade-offs:

1. Cardinality: A smaller CEDS limits the possible points of failure of the communication

overlay.
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FIGURE 6.1. A multilayer network with (square and circular) nodes connected by black
(intra-layer) and red (inter-layer) links. Three different connected edge dominating
sets, namely set of purple edges (with small squares on the links), set of blue edges
(with small circles on the links) and set of green edges (with small triangles on the
links) are also depicted.

2. Number of inter-layer links: A resilient multilayer network overlay must limit depen-

dence on any particular network layer while limiting the likelihood of “islanding”, i.e., the

loss of communication among network layers. Increasing the number of inter-layer links

accomplishes these goals simultaneously.

3. Energy awareness: Communication and monitoring are both energy-intensive activities. The

resulting energy depletion may exhaust the batteries of network elements, disconnecting

the overlay and/or resulting in the loss of monitoring capabilities. In such settings, the

CEDS must be created anew, a time- and energy-intensive process. Thus, the distribution of

energy among elements chosen in the overlay must be such that there are fewer low-energy

elements.

4. Distributed computation: The aggregation of information and the implementation of cen-

tralized decisions are major challenges in such ad hoc networks. A distributed algorithm,

in which the network elements make determinations on their presence or absence in the

overlay using local information, allows the creation and maintenance of the overlay in

battlefields.

For example, in Fig. 6.1, each of the purple (small squares on links), blue (small circles on

links) and green (small triangles on links) sets of edges comprise a (minimum cardinality) CEDS.

The blue and purple overlays have the same number of inter-layer links, yet the edges in the
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blue overlay have end-points with higher energy-levels, making it a preferable option. The green

overlay is the best among the three, because it has more inter-layer links and it is comprised of

higher energy elements.

At this point, we wish to make clear the differences of the present work to our own research

that initiated the study of domination for multilayer networks, and also to highlight the main

chapter contributions. In [92, 93] we investigated analytically and experimentally the problem of

node domination for multilayer networks, whereas here we study edge domination for multilayer

networks. In [94] – which is the companion article of the present chapter – we introduced the

problem of edge domination for multilayer networks, showed its relation to network control

through the concept of maximal matching, gave complexity bounds and also, we developed heuris-

tic algorithms. Here, we generalize the concepts of that paper by adding one more requirement,

that of energy efficiency. This generalization presents challenges, because energy in not a feature

of the edges, but of the network nodes, and thus new methods are needed to transform “node

quantities” into “edge quantities”. In summary, the present chapter contributes a generalization

of the problem introduced in [94], presents its complexity, it provides simple and elegant methods

to exploit node features in order to quantify edge significance, and it develops efficient heuristic

algorithms to address the new problem.

The rest of the chapter is organized as follows: Section 6.2 formalizes the investigated problem;

section 6.3 describes the proposed distributed heuristic algorithms to solve it; section 6.4 analyzes

their performance and finally section 6.5 concludes the present work.

6.2 The EA-MCMCEDS problem

First, we build upon the notions presented in §5.2.1 regarding the domination concepts to

describe the overlay in single layer settings [54], and then factor in the effects of a multilayered

architecture and energy-awareness, which set our problem, henceforth called the Energy-Aware

Minimum Connected Multi-Colored Edge Dominating Set (EA-MCMCEDS), apart from the

existing literature. The subsections proceed in the order of the four goals outlined in §6.1.

6.2.1 Minimum cardinality connected edge domination

Given a single layer network G = (V ,E) and by following Definition 5.1 about EDS, for a

vertex v ∈ E one of the following two possibilities holds:

Case (a) v will be one of the two endpoints of an edge belonging to the EDS; in which case we

will call it a member of the overlay, e.g., vertices S6 and S7 for either blue or green overlay

in Fig. 6.1.

Case (b) v, a non-member of the overlay, will be at one hop distance from a member of the

overlay, e.g., vertex S2 for either blue or green overlay in Fig. 6.1.
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We can easily observe that all vertices at an one-hop distance from a non-member of the

overlay will be overlay members. This means that placing monitoring devices on the vertices

(endpoints) of EDS edges will allow the monitoring of all communication within the system.

Overlay vertices can further be categorized into two groups:

Case (a1) v will be a core overlay member if more than one EDS edges is incident to v; e.g.,

vertex S7 in Fig. 6.1 for either the blue or green overlay.

Case (a2) Otherwise, if exactly one EDS edge is incident to v, it will be a peripheral overlay

member; e.g., vertex S6 in Fig. 6.1 for either the blue or green overlay.

A further refinement to the EDS concerns the notion of independence to the chosen edges.

Based on Definition 5.2 about the IEDS (also called a maximal matching [123]) any minimum-

cardinality EDS will also be a MEDS. Note that, for an EDS of a certain cardinality (number of

edges), the IEDS will require the most number of monitoring devices. However, there may exist

some MEDSs requiring fewer monitoring devices than the minimum-cardinality IEDS [139].

While the EDS captures the goal of monitoring communications, it may not be able to provide

the coordination and communication capability that is required of an overlay. For coordination

within the chosen subset of edges, we need the EDS to be connected (CEDS).

6.2.2 Edge domination in multilayer networks

We now consider the equivalent of the single layer concepts described above in the context of

multilayer networks, and describe how the relevant concepts described in §6.1 can be captured in

the creation of an overlay in such networks. We first define (GML,EML) to represent a multilayer

network, with GML = {G1,G2, . . . ,Gm} such that:

• G i = (Vi,E i) is a single layer network for all 1≤ i ≤ m, with m being the number of layers.

• EML = {E i j ⊆Vi ×Vj|1≤ i, j ≤ m, i 6= j} is the set of existing inter-layer links.

It follows that:

Definition 6.1. A CEDS of the multilayer network (GML,EML) is a set of edges E′′ ⊆ (
⋃m

i=1 E i)
⋃

EML

such that the induced single layer subgraph on the vertex-set
⋃m

i=1 Vi is a CEDS.

The communication overlay should not be excessively reliant on any single layer, as it would

be vulnerable to correlated failures. Thus, an ideal overlay would minimize the total number of

edges within the overlay while at the same time maximizing the number of inter-layer links.

Definition 6.2. A Multi-Colored Minimum Connected Edge Dominating Set (MCMCEDS) E′′

of the multilayer network (GML,EML) is a CEDS with minimum cardinality |E′′| that has the

maximum number of inter-layer links, |E′′⋂EML|. Such a set is called multi-colored due to the

practice of assigning a different non-black color to the elements of EML for each pair of layers

connected by an edge, with all elements in (
⋃m

i=1 E i) being considered black [94, Definition 7].
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6.2.3 Energy availability and constraints

Key results within the field of ad hoc networks have pointed to the importance of factoring

in the energy distribution, and not just the total energy content, and moreover it has been

shown that under certain circumstances, network lifetimes are maximized under equitable

distributions of energy within the network and that optimal communication policies put more

of the communication burden on the network elements with the most energy [22, 43]. Here, we

assume that the energy available to each network element is known to that network element and

can be communicated to its neighbors. Thus, we can adapt our overlay creation methods to be

energy-aware:

Definition 6.3. An MCMCEDS creation method is Energy-Aware (EA) if it utilizes the energy

available to network elements to find an overlay with high energy elements.

Ideally, all overlay nodes will have high energy, yet there is a possible trade-off between the

cardinality and connectedness of the MCMCEDS and the energy of the overlay elements. Given

the results described from the ad hoc networks literature, our aim is to avoid elements with low

energy in the overlay, while also having higher energy nodes at core nodes, as such nodes have to

relay information as well as performing the sensing and communication required of all overlay

nodes. We further explore these concepts in our simulations (§6.4.3).

6.2.4 Distributed energy-aware overlay generation

The nature of ad hoc networks demands the overlay creation algorithm to be distributed, with

each element only having knowledge of their k-hop neighborhood. (Here, k = 2.) This adds the

final element to the problem at the heart of this chapter:

Problem 6.1 (Distributed EA-MCMCEDS Computation). We seek to find an energy-aware dis-

tributed algorithm that computes an MCMCEDS of a multilayer network given the energy

available to network elements (i.e., vertices).

Proposition 6.1. Distributed EA-MCMCEDS computation is NP-hard.

It is easy to prove Proposition 6.1 following the reasoning of [94, Theorem 1], and thus

we will hence develop heuristic algorithms to solve the Distributed EA-MCMCEDS problem.
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Algorithm 6.1: CCEDS
precondition :Known EclPCI index values of nodes in (N(u)) ∧ (N2(u))
postcondition :Completed MCEDS election process
remarks :mlNetwork G = (V, E) where V and E are vertex & edge set, R(u) : relay node set of

node u, M(u) / M(w
edge
i, j ) : (T)rue / (F)alse indicators for node u / edge wedge

i, j being
a DS node / edge.

1 repeat
2 Add node l ∈ N(u) with largest EclPCI & which covers at least one new node in N2(u) to R(u);
3 until each node in N2(u) is covered by node(s) in R(u)
4 Announce R(u);
5 if selected as a relay node then
6 M(u) = T; Announce status change;
7 Build Sconstrained

(u) = u1,u2, . . . ,un | uk (1≤k≤n) ∈ N(u)∧N2(u), M(uk (1≤k≤n)) = T,
EclPCI(u) < EclPCI(uk (1≤k≤n));

8 if Sconstrained is subject to N(u)⊂ N(u1)∪N(u2)...∪N(un) and
u1,u2, ...,un form a connected graph then

9 M(u) = F; Set M(wedge
i, j ) = F any edge wedge

i, j incident to node u; /* CDS Pruning */

10 Announce status change; Return;

11 end
12 Build Sedge

(u) = wedge
u,l1

, wedge
u,l2

, . . . wedge
u,lm

| wedge
u,lk (1≤k≤m) ∈ E, lk ∈ N(u), M(lk) = F;

13 if ∃ wedge
u,lk (1≤k≤m) ∈ Sedge

(u) adjacent to a non DS edge and that edge is not incident to a DS node

then
14 Add wedge

u,lk (1≤k≤m) in the EDS ;

15 Announce status change;

16 end
17 end

6.3 Proposed distributed algorithms

Here we describe three energy-aware distributed algorithms that heuristically solve the EA−
MCMCEDS problem. The common principle in all the proposed algorithms is that when seeking

which edges to include into the edge dominating set, these edges are selected based on their

ability to a) dominate many other edges, b) connect different layers, and c) have energy-rich

endpoints. Towards translating these goals into a heuristic rule for selecting edges, we use the

local centrality measure we proposed in [92], clPCI, which we now enhance to take energy levels

into account. Striving for simplicity and generalization, along the lines of earlier works (e.g.,

[36, 93], we adopt a plain generalization of clPCI, termed EclPCI, for a node u with energy E(u),

as follows:

(6.1) EclPCI(u) := E(u)× clPCI(u).

The computation complexity of EclPCI index is O(∆2) in the worst case, where ∆ is the

maximum node degree in the network [93].
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For the construction of the edge dominating set, the proposed algorithms either work with

nodes to calculate node dominating sets and then turn them into edge dominating sets, or with

edges (actually on their equivalent nodes in the line graph [54] of the original graph). The value

of EclPCI is used to prioritize nodes/edges. Whenever link-weights are needed, we define them

to be the product of the EclPCI values of the endpoints (vertices) of the link, so as to prioritize

links whose endpoints are both energy-rich vertices and posses strategic position within the

topology. In the interest of space, we give brief descriptions of the algorithms and provide their

computation complexities and their pseudo-codes.

The first algorithm, CCEDS, calculates a CDS and then applies a pruning mechanism using

connectivity as quantified by EclPCI to establish a total order among nodes in the CDS. The

set of edges whose endpoints are CDS nodes comprise the initial EDS. Finally, it adds into the

EDS any edges that are attached to edges not incident to DS nodes. The details of the algorithm

are shown in Algorithm 6.1.

Proposition 6.2. The computation complexity of CCEDS is O(∆3), where ∆ is the maximum

node degree in the network.

Proof. The worst case regarding the construction phase of the CDS results when a host u has ∆

neighbors and each one of them contributes ∆ nodes to the coverage of the 2-hop neighborhood

of u. In this case, host u needs to run once over its neighbor set of size O(∆) and “erase” those

nodes of the 2-hop neighborhood of u (which has maximum size O(∆2)) covered by the specific

neighbor. Further, the computation complexity of the respective pruning phase is also O(∆3)

because a relay node u in order to decide if it will act as a relay node or not it needs to calculate

the coverage capability of a connected graph composed of both 1-hop and 2-hop neighbors. Thus,

each relay node u compares its neighbor set with ∆2 neighbors in the worst case, and the neighbor

set comparison has a O(∆) complexity. Finally, the computation complexity of complementing the

EDS with some “obsolete” edges; i.e., that are not attached to a DS node, is O(∆2) because a relay

node u needs to run once over its neighbor set of size O(∆) and check for those neighbors that

are not DS nodes if they have a non ds neighbor, and the neighbor set comparison has a O(∆)

complexity. a

The second algorithm, EPEDS, first calculates an IEDS and then connects it. To elaborate,

during the IEDS creation process each node selects the highest-weight undominated edge in-

cident to it and adds it to the EDS (if any exist). In order for the IEDS to be converted into

a CEDS, each node that belongs to a DS edge adds enough incident edges (prioritized by the

EclPCI of the one-hop neighbor at the other end of the edge) to collectively dominate its two-hop

neighborhood. Finally, this algorithm uses a generic pruning policy which recognizes and then

removes redundant edges with small weights from the CEDS. The details of the algorithm are

shown in Algorithm 6.2.
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Algorithm 6.2: EPEDS
precondition :Known EclPCI index values of nodes in (N(u)) ∧ (N2(u))
postcondition :Completed MCEDS election process

1 Build edge adjacency matrix Emat
(u) with N(u) & N2(u);

/* ∃ e(i, j) ∈ E ⇐⇒ i ∈ N( j) ∧ j ∈ N(i) */

2 Add weights wedge
i, j = EclPCI(i)∗EclPCI( j) to Emat

(u) ;

3 Build Sedge
(u) = wedge

u,l1
, . . . , wedge

u,lm
| wedge

u,lk (1≤k≤m) ∈ E, lk ∈ N(u);

4 if ∃ wedge
u,lk (1≤k≤m) ∈ Sedge

(u) not attached to DS edge then
5 Select the edge with the largest weight and set M(wedge

u,lk (1≤k≤m)) = T; /* EDS election */

6 Announce status change;

7 end
8 repeat
9 Select a node l ∈ N(u) with the largest EclPCI index value that covers at least one new node in

N2(u);
10 M(l) = T; M(wedge

u,l ) = T; /* CEDS process */

11 until each node in N2(u) is dominated by at least one DS node in N(u)
12 Announce status of nodes in N(u);
13 Build Sedge

(u) = wedge
u,l1

, . . . wedge
u,lm

| wedge
u,lk (1≤k≤m) ∈ E, lk ∈ N(u), M(lk) = T;

14 repeat
15 if wedge

u,lk (1≤k≤m) is dominated by connected wedge ∈ Emat
(u) with larger weight then

16 M(wedge
u,lk (1≤k≤m)) = F; /* EDS Pruning */

17 Announce status change;

18 end
19 until each wedge

u,lk (1≤k≤m) ∈ Sedge
(u) has been considered

Proposition 6.3. The computation complexity of EPEDS is O(∆3), where ∆ is the maximum

node degree in the network.

Proof. The worst case regarding the construction phase of the EDS results when a host u has ∆

neighbors and each one of them has ∆ neighbors too. The adjacency matrix build up and its

subsequent population with the weight value wedge
i, j of each respective edge requires a node u

to compare its 1-hop and 2-hop neighbor set with O(∆2) neighbors in the worst case, and the

neighbor set comparison has a O(∆) complexity. Further, the computation complexity of electing

an edge as a DS edge is O(∆2), as a node u needs to compare its 1-hop neighbor set with ∆

neighbors in the worst case, and the neighbor set comparison has a O(∆) complexity. Connecting

the EDS requires a host u to run once over its neighbor set of size O(∆) and “erase” those

nodes of the 2-hop neighborhood of u (which has maximum size O(∆2)) covered by the specific

neighbor. Finally, the computation complexity of the pruning phase is O(∆3), because a node u

needs to calculate the coverage capability of a connected graph composed of both 1-hop and 2-hop

neighbors in order to decide if it will act as a DS node or not. Thus, each node u compares its
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neighbor set with ∆2 neighbors in the worst case, and the neighbor set comparison has a O(∆)

complexity. a

The third algorithm, NPEDS, uses the mechanics of EPEDS to calculate the CEDS, and

then uses the pruning mechanism of CCEDS.

The computational complexity of NPEDS is upper bounded by O(∆3) where ∆ is the maxi-

mum degree in the network. We will not provide the detailed proof here because it is a mix of the

previous two algorithms.

6.4 Performance evaluation

Next we present the competing algorithms and the datasets we used in the experiments and

provide the analytical results.

6.4.1 Competing algorithms

We compare the performance of the three proposed algorithms, CCEDS, EPEDS and NPEDS,

across the various aspects of the EA−MCMCEDS problem. Moreover, since degree-based node

dominating set construction could be a viable technique, we developed WCEDS, which uses a

straightforward energy-aware generalization of degree centrality [90] for multilayer networks, as

a benchmark. WCEDS uses the same mechanics as CCEDS to calculate the CEDS, with the

exception that the weighted degree centrality is used in place of EclPCI.

6.4.2 Datasets

Due to the lack of publicly available, real-world military multilayer networks, we developed a

generator for multilayer weighted networks which is described in detail in [12]. The construction

of a multilayer network is controlled by the average degree of each node, by the number of nodes

per layer (i.e., size of the layer), the diameter of each layer, and the number of layers. We apply

four distinct Zipfian distributions, one per parameter of interest, controlled by the skewness

parameter s of the respective Zipfian distribution:

• sdegree ∈ (0,1): to generate the frequency of appearance of highly interconnected nodes;

therefore the degree distribution is Zipfian.

• slayer ∈ (0,1): to choose how frequently a specific layer is selected; therefore the layer IDs

collectively as edge anchors follows a Zipfian distribution.

• snode ∈ (0,1): to choose how frequently a specific node is selected in a specific layer; therefore

the distribution of node IDs as edge endpoints is Zipfian distributed.

• sweight ∈ (0,1): to choose how energy is distributed to nodes; therefore the energy distribu-

tion is Zipfian.
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We selected a default setting for each of the parameters. Collectively, we call these parameters

the skewness, and we represent them as a sequence of four floats, e.g., 0.5−0.5−0.5−0.5, which

means that sdegree = 0.5, slayer = 0.5, snode = 0.5 and sweight = 0.5 (the default settings we used to

create the datasets). Table 6.1 records all the independent parameters of our topology generator,

their range of values, and their default values.

TABLE 6.1. Experimentation parameters values.

parameter range default
avg. node degree (D) 3, 6, 10, 15, 20 6
network diameter (H) 3, 5, 8, 12, 17 8
#network layers (L) 2, 3, 4, 5, 7 4

6.4.3 Results

We performed a simulation-based performance evaluation of the competing algorithms in MAT-

LAB. We include IEDS in the plots as a benchmark, but do not comment on its performance

because it does not create a CEDS.

In Figs. 6.2-6.4, we plot the performance of the competitors in terms of the the goals of the

EA−MCMCEDS problem as the mean degree, diameter, and number of layers of the synthetic

multi-layer network is varied. In these figures, the first row of histograms show the size of the

CEDS that each algorithm creates, which is measured as a percentage of the total edges in the

network, while the second row plots show the percentage of all the inter-layer links that are

included in the IEDS. An ideal algorithm will minimize the former, while maximizing the latter.

The third row of plots show the energy distribution of the vertices selected for the overlay, plotting

their mean energy with associate error bars, while the fourth row of plots show the number of

overlay nodes. An ideal algorithm would cover the network using relatively few, high-energy

nodes, so it would maximize the third row of plots while minimizing the fourth.

6.4.3.1 Impact of topology density

In Fig. 6.2, we consider the impact of topology density on each competitor’s performance. In the top

row, we evaluate the size of the EDS that each competitor creates. We first observe that the size

of the EDS is almost a decreasing function of node density, as in higher network densities, each

node will participate in more edges, and each edge can thus dominate more edges. It is interesting

that both CCEDS and WCEDS manage to create the smallest MCEDS (approximately 2.0 up

to 2.1 times the size of IEDS) regardless of how sparse or dense the network is. On the other

hand, EPEDS and NPEDS create the largest EDSs for mean degrees 3 and 6 (with > 60%

and > 50% more edges, respectively), while they perform close to the other heuristics for larger

mean degrees. The best performing algorithms in sparse and medium density networks start

with an MCDS in creating an MCEDS, which means that they can start from much sparser
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overlay sets compared to methods that require the creation of a CEDS from the start, as without

coordination, many edges are needed for domination in sparse networks.
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FIGURE 6.2. Impact of network density on the performance of each competitor.

In the second row, we see that CCEDS and NPEDS include more inter-layer links than

competitors, with performance levels that do not change much with network density. On the other

hand, while EPEDS is the best performing algorithm when mean degree = 3, its performance

drops drastically for larger mean degrees. WCEDS also has a similar, yet less drastic, perfor-

mance drop. This is because EclPCI, as used by CCEDS and NPEDS enables these algorithms

to privilege inter-layer links for inclusion in the CEDS, while WCEDS is layer-agnostic. The

surprising drop in performance for EPEDS is due to its edge-pruning mechanism (as opposed to

the node-pruning mechanism of CCEDS/NPEDS), which increases the likelihood of pruning

inter-layer links: as the probability of the existence of a dominating edge in either of the linked

layers increases with the mean degree, and the probability of self-deselection by the inter-layer

edge in the pruning phase also increases.

In the third row, we see that CCEDS on average, leads to a 3−5% increase in overlay node

energies in sparse networks (mean degrees 3 and 6) compared to the other competitors. This

difference levels out at higher densities, except with the worst-performing WCEDS. This is

tightly coupled with the arguments around the size of the selected EDS presented for the first

row - CCEDS chooses fewer, yet more central and higher energy edges in sparse networks

precisely because it does not impose creating a CEDS from the first step.

In the last row, we plot the relative size of the overlays. Interestingly, and counter-intuitively,

we see that the overlay size grows with the mean degree. We may expect that a denser network

could be dominated by fewer overlay nodes. However, the number of edges in a network grows

with the edge density, and as we are seeking to build an edge-dominating set, the number of
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overlay nodes also grows. In this aspect as well, CCEDS, NPEDS, and WCEDS perform best,

with EPEDS′s edge-based pruning leading to a > 14% and > 6% handicap for mean degrees 3

and 6.

6.4.3.2 Impact of network diameter

In Fig. 6.3, we consider the impact of network diameter on each competitor’s performance. In the

top row, we observe that the size of the constructed EDS increases with the network diameter

for all algorithms. This is the result of sparser neighborhoods, i.e., fewer links between network

nodes. In other words, there are fewer, longer (in hops), and less distinct paths in the multilayer

network, which leads to the election of a large number of edges for the EDS. Except for the

worst-performing EPEDS (whose size goes from 29% larger than the best competitor when

diameter = 3 up to 82% larger when diameter = 17) all the algorithms lead to similar EDS sizes.

The pruning mechanism of EPEDS is responsible for its bad performance.
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FIGURE 6.3. Impact of network diameter on the performance of each competitor.

From the second row of plots, we see that CCEDS and NPEDS perform best overall with

regards to the number of the EDS interlinks, with the relative number of EDS interlinks staying

stable as the diameter is varied. This means that they both work well in bushy (small number

of hops) or skinny (large number of hops) networks. EPEDS, on the other hand, performs

remarkably well for larger network diameters, while performing poorly when diameter = 3

(where it includes less than the half number of interlinks in the EDS compared to CCEDS).

For example, EPEDS creates an overlay with > 45% more interlinks compared to CCEDS and

NPEDS when diameter = 12 or 17, yet this comes at the cost of a much larger EDS size, which

is unacceptable. WCEDS, the layer-agnostic baseline, only reaches the respective performance

of the other algorithms in terms of interlinks when diameter = 17, while having much fewer
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interlinks for more bushy networks. So, while WCEDS performs well in terms of EDS size for

bushy networks, this is traded off against the lower resiliency of the resulting overlay. Note

that the number of the interlinks that are included in the EDS by each algorithm is a direct

consequence of the pruning mechanism they employ, and more precisely, how well each of them

can distinguish between a simple edge and an interlink.

From the third row of plots, we see that all the algorithms lead to overlays with similar

average energy levels and there is no clear winner. However, for medium-to-large network

diameters (when it equals 8, 12 and 17) both CCEDS and NPEDS select nodes with slightly

more energy (on average) into the overlay (showing a 3.5–10% improvement).

Interestingly, in the last row of plots, we see that the DS size decreases significantly for all

the competitors when diameter = 12 and 17. This arises from the fact that the multilayer network

is created from the interconnection of sparse and skinny networks in these settings. In such a

case, the DS nodes are shared between many EDS edges. Most of the algorithms lead to similar

DS sizes, except for EPEDS which leads to 3.5% (when diameter= 3) to 18.0% more nodes in

the DS. This is due to its inefficient pruning mechanism.

6.4.3.3 Impact of number of layers

In Fig. 6.4, we consider the impact of the number of network layers on each competitor’s per-

formance. From the top row of plots, we see that for the majority of the algorithms (all except

EPEDS), the number of edges in the EDS decreases with an increase in the number of the

multilayer network layers, leading to EDS selections approximately 2.0–2.4 times the size of

the IEDS, because of the richer connectivity among layers’ hub nodes imposed for the specific

value(s) of zipfian distribution(s). We also observe that all competitors lead to similar size EDS

selections, except for EPEDS whose EDS is 30% larger than the rest.

From the second row of plots, we observe that the number of EDS interlinks decreases as the

number of layers increases. This is because it is increasingly difficult for all the algorithms to

distinguish between inter-layer and intra-layer edges when the total number of edges increases

(a by-product of the increase in the number of layers). However, both CCEDS and NPEDS

manage to confront this problem more efficiently than the competition when we have 2-layer

and 3-layer networks, with both having at least 25% and 38% more interlinks in the EDS than

the competition, respectively. This is because EclPCI can improve the ability of an algorithm to

distinguish between interlinks and intra-layer edges. It is interesting to note that the relative

differences in the number of interlinks chosen by the competitors does not change with the

number of network layers, except in the case of the 7-layer network, in which EPEDS chooses a

relatively large number of interlinks in its relatively large EDS. Again, WCEDS has the worst

performance among the competitors in this aspect due to its layer-agnostic nature, except for

the 2-layer network where it performs 12% better than EPEDS.
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FIGURE 6.4. Impact of number of layers on the performance of each competitor..

In the third row of plots, we see that both CCEDS and NPEDS create overlays with the

most average energy per node irrespective of the number of network layers. Interestingly, the

number of network layers has no effect on the relative differences in the performance of the

competitors.

Finally, in the bottom row of plots we observe that the percentage of nodes included in the

DS does not change with the number of network layers for the majority of the competitors. Once

again, the exception is EPEDS, for which the number of DS nodes increases with the number of

layers.

6.4.3.4 Energy analysis of the overlay

In Fig. 6.5, we analyze the (average) energy levels of the core, periphery, and non-members of

the overlay along with the size of the EDS for the competing algorithms, in order to illustrate

the tradeoff between picking only high-energy nodes and providing sufficient coverage. Each bar

has three colored segments: a pink segment corresponding to core overlay nodes, a light orange

segment corresponding to peripheral overlay nodes, and a light green segment corresponding to

non-members of the overlay. The height of each colored segment represents the percentage of

nodes belonging to that node class; therefore, the sum of the heights of the segments is 100%.

The number superimposed within each colored segment depicts the average energy of the nodes

belonging to that class.

An algorithm will be efficient in terms of overlay size if the total height of the associated pink

and the light orange segment is small relative to its competitor(s). We observe from the plots

(which vary the number of layers, the diameter, and the mean degree) that CCEDS produces the

smallest overlay in (almost) all cases, as observed in earlier figures as well.
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FIGURE 6.5. Energy levels (average) of the core, periphery, and non-members of the
overlay along with the size of the EDS.

An algorithm is efficient in terms of energy, primarily if the average energy of the its core

overlay nodes (superimposed number of the pink segment) is high and the average energy of the

overlay’s non-members (super-imposed number over the light green segment) is low. We observe

that on average, CCEDS′s core overlay nodes have higher energy than those of their competing

algorithms and outperform the second best algorithm, NPEDS, by around 4% in some cases.

However, NPEDS has quite similar performance to CCEDS in general, and is slightly superior

to CCEDS for networks with very small diameter (1.5% improvement).

6.5 Conclusions

We considered distributed methods of creating a minimum-size overlay network of monitoring

devices over a wireless multilayer ad hoc network. We emphasized the overlay network’s resilience

to correlated layer failures and to energy depletion in devices, paying special attention to inter-

layer links, and formalized the problem in terms of edge dominating sets (EDS) in multilayer

networks (EA−MCMCEDS).

We proposed three distributed algorithms for solving EA−MCMCEDS, namely CCEDS,

EPEDS and NPEDS. CCEDS creates a CEDS by first starting from a node dominating set,

whereas the other two start from an independent EDS. All employ smart pruning heuristics to

reduce the size of the resulting connected EDS. We compared their performance, along with that

of a baseline competitor, using extensive simulations varying network topological characteristics

and energy distribution patterns in synthetic multi-layer networks. CCEDS was, by a wide

margin, the best performing algorithm in terms of EDS cardinality, layer-based resilience, and

energy composition in (almost) all cases.
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7
A RICH-DICTIONARY MARKOV PREDICTOR FOR VEHICULAR

TRAJECTORY FORECASTING

7.1 Introduction

Vehicular ad hoc networks (VANETs), are spontaneous, flexible wireless networks that are

able to support the associated applications in dynamic, multi-hop topologies. However,

the relatively high speed of the moving vehicles degrades link quality, causes fast fading,

short connectivity and high frequency hand-offs. In general, such mobility related problems are

addressed by appropriate broadcasting techniques, by smart routing, by clustering protocols [23].

Nevertheless, as Kolios et al. explain in [72], if mechanical relaying; i.e., “store-and-carry” is

allowed for the vehicles, then “. . . a plethora of different, novel resource-utilization schemes can be

explored to increase network performance”. Evidently, one of the key components for achieving

relaying is the ability to predict vehicles trajectories accurately.

It has been observed [112] that in practice, weekdays and weekends usually exhibit sig-

nificantly different traffic conditions, whilst at the same time having similar congested and

congestion free traffic patterns. Based on that observation it is straightforward to conclude that

every vehicle does not follow the same path every time they leave their base, e.g., house. These

different moving patterns relate to time of day such as driving to work in the morning and hobbies

in the evening and also the entry point in the road network, which probably means a different

final location. In such a realistic situation, where the actual path of each vehicle is not known in

Related publication [C2]: Dimitrios Papakostas, Dimitrios Katsaros. “A Rich Dictionary Markov Predictor for
Vehicular Trajectory Forecasting”, Proceedings of the 30th International Conference on Tools with Artificial
Intelligence (ICTAI), IEEE Press, Volos, Greece, November 5-7, 2018.
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advance and most of the vehicles enter some areas of the city, e.g., city centre, on the same time

period, the existence of a fast and accurate prediction mechanism is beneficial to:

• Routing protocols; i.e., the selection of the next hop is a necessary ingredient of store-carry-

forward algorithms [70], and also for geocasting protocols [64].

• Traffic management: traffic management applications focus on improving the vehicle traffic

flow and traffic assistance. Possible converging vehicle paths might provide drivers useful

information so that they can make the best decisions in terms of their route, such as

avoiding congested areas.

• Connectivity robustness: user applications which provide value added services like the In-

ternet, and p2p applications, would exploit proposed (predicted) paths that would guarantee

an acceptable Quality of Service (QoS) for these applications.

• Safety: drivers are proactively informed about possible conflicting paths between neighbor-

ing /approaching cars.

In this chapter, we propose the RDM predictor, a new next-location prediction scheme. The

chapter makes the following contributions:

• It exploits the resource-rich environment (battery, computing power and storage) of a

vehicle to build a rich summary of its roaming history that subsequently is used to provide

more accurate predictions.

• It uses data structures that are constructed in a purely distributed fashion.

• It develops a new forecasting model that is a combination of two prediction mechanisms.

• The proposed algorithm is fully parameterized, presenting different trade-offs in efficiency

vs. prediction accuracy.

• It provides a comparison of the proposed method against several, model independent and

highly accurate prediction algorithms, and the results show that RDM achieves on the

average:

– More that 35% better prediction accuracy than the second best-performing algorithm.

– Competitive to faster prediction times than its competitors.

The rest of this chapter is organized as follows: First, we provide the technical insight of the

prediction algorithms and explain how the route prediction problem can be modelled as a discrete

symbol prediction problem (§ 7.2). Then, we briefly survey related works (§ 7.3), we unveil the

unique characteristics of RDM (§ 7.4), we present its prediction mechanism (§ 7.5) and evaluate

its performance (§ 7.6). Finally, we conclude the chapter (§ 7.7).
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7.2 Technical insight of prediction algorithms

Consider a sequence of position updates {x1, x2, . . . xi} being generated by a vehicle, represented

by the stochastic process X = {xi}. A predictor will have to predict what the next position xi+1

is going to be on the basis of the observed history while minimizing the prediction errors over

the course of an entire sequence. Authors in [44] proved the existence of universal predictors

that could optimally predict the next item in any deterministic sequence and argued that an

optimal predictor must belong to the set of all possible finite state machines. They also showed

that universal FS predictors achieve the best possible sequential prediction that any FSM can

make and that Markov predictors, a subclass of FS predictors, perform as well as any finite state

machine. Moreover, they highlighted that a Markov predictor whose order grows with the number

of symbols in the input sequence attains optimal predictability faster than a predictor with a

fixed Markov order. Finally, they proved that Markov predictors based on the LZ78 incremental

parsing algorithm attain optimal predictability because they achieve to changing the Markov

order rapidly enough to reach a high order of Markov predictability and slowly enough to gather

sufficient information at each order of the model to reflect the model’s true nature.

7.2.1 Markov predictors

To provide the formal definition of the prediction model we use in our work we follow the work in

[66]; a trajectory ai of a vehicle i is a finite sequence of symbols a j
i drawn from an alphabet Σ

(where a j
i ∈ Σ, ∀ i, j), with each symbol a j

i standing for a road-segmID. A predictor accumulates

sequences of the type ai = a1
i ,a2

i , . . .ani
i , where ni denotes the number of symbols constituting

ai. Without loss of generality, we can assume that all the knowledge of the predictor consists

of a single sequence a = a1,a2, . . .ani . Based on a, the predictor’s goal is to construct a model

that assigns probabilities for any future outcome given “some” past. As it is stated in [66], this

formulation implies a stochastic process (X t)t∈N where at any given time instance t (meaning that

t symbols xt, xt–−1, . . . x1 have appeared, in reverse order), we need to calculate the conditional

probability :

(7.1) P̄[X t+1 = xt+1|X t = xt, X t−1 = xt−1, . . .],

where xi ∈Σ,∀ xt+1 ∈ Σ.

Predictors that use this kind of prediction model are termed higher-order Markov predictors

and the “history” xt, xt−1, . . . used in the above definition is called the context of the predictor.

These predictors maintain a set of relative frequency counts for the symbols seen at different

contexts in the sequence, thereby extracting the sequence’s inherent pattern. They then use these

counts to generate a posterior probability distribution for predicting the next symbol to come.
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7.2.2 The vehicle route prediction problem as a discrete symbol prediction
problem

In our work we model the road network as a directed graph G = (V ,E), where the set V represents

the road segments and the set E represents the directed connectivity links between pairs of road

segments. Each segment has its own identification number, namely, road-segmID (Figure 7.1).
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FIGURE 7.1. A sample road network and its corresponding graph; the arrows in the
road network and graph depict permitted direction of movement. SegmIDs are
represented by nodes.

The segmentation of a road network into segments is a process similar in principle to that

of designing location areas for a cellular network [19] [108]. Vehicles are assumed to perform

random walks over this network and is also taken that each vehicle is aware of the road-segmID

that is moving on, by the use of technologies such as GPS. These position updates, not only are

they used to build the moving history of each vehicle but in the form of a discrete symbol sequence

they are shared between communicating vehicles in order to support their prediction process.

7.3 Related work

The backbone of the LZ family of prediction algorithms is LZ78 [146]. LZ78 performs incremental

parsing of an input string “x1, x2 . . . xi” into c(i) substrings (i.e., phrases) “w1,w2 . . .wc(i)”, such

that ∀ j > 0, the prefix of the substring w j (i.e., all but the last character of w j) is equal to some

wi for 1< i < j. Because of this prefix property, parsed substrings and their relative frequency

counts can be maintained efficiently in a multiway tree structure, namely, a digital tree or prefix
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tree (commonly known as trie). An LZ78 parsing of the string “aaababbbbbaabccddcbaaaa” yields

the phrases: “a”, “aa”, “b”, “ab”, “bb”, “bba”, “abc”, “c”, “d”, “dc”, “ba”, “aaa”. LZ78 maintains

statistics for all contexts seen, for example, the context “a” occurs five times (at the beginning of

the phrases “a”, “aa”, “ab”, “abc”, “aaa”), the context “bb” is seen two times (“bb”, “bba”), etc.

LZ78 has three main drawbacks:

• In any LZ78 parsing of an input string, all the information crossing phrase boundaries is

lost. In our example string, the fourth symbol “b” and fifth and sixth symbols “ab” form

separate phrases; had they not been split, LZ78 would have found the phrase “bab”, thereby

creating a larger context for prediction.

• Phrases contained within substrings are also lost;

• The prediction performance of LZ78, is not good for short sequences [44] [66] [115].

LeZi Update (LZU) [15] makes the same parsing of LZ78 algorithm, but instead of adding

just the substrings resulting from this parsing, it adds also all the suffixes of each substring to

the LZU trie. Therefore, phrases within substrings are taken into account. In our example string

the phrase “bc” is added in the LZU dictionary, which is a suffix of the phrase “abc”.

The algorithm proposed by Gopalratnam [51], namely ActiveLeZi(ALZ) is intended to

consider the phrases among consecutive parsed substrings, thus solving the remaining problem

of LZ78 algorithm and converging faster to optimal predictability. In order to achieve this, ALZ

incorporates a window of variable length, which is determined on the fly, without any extra

computational overhead, by the longest phrase parsed by LZ78 algorithm at each step. Once the

length of the window is updated and a new symbol is added to it, all the suffixes of the window

are added to the trie. The detailed performance evaluation of the major Markov predictors in [66]

highlighted their shortcomings and suggested routes for their improvement.

Authors in [98] employ the ALZ algorithm to construct frequency trees of a fixed depth kmax

and perform a Modified Prediction by Partial Match (MPPM) technique in order to obtain a

prediction performance that outperforms the best single model predictor. Since the prediction

process is online, MPPM utilizes the true data to adaptively weigh the prediction performance

of each different order Markov model. The weights are updated at every step and the best

performing Markov model is given the highest weight. Thus the problem of finding the best model

order for a given sequence length is also implicitly solved by applying the above technique.

Trajectory prediction in V ANETs has attracted a significant amount of research recently [110],

in order to cope with increased safety issues that arise from the development of autonomous

driving technologies [9]. Some recent works deal with lane change prediction [58] [60]; others

perform whole trajectory matching with the aim of predicting far-in-the-future positions of a

mobile [126, 137]. On the other hand, RDM is a fast, online, next-site prediction model based on

analyzing local movement patterns from the recent past.
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7.4 The Rich Dictionary Markov (RDM) Predictor

The RDM predictor is designed for the V ANET environment, thus assuming significant energy

resources, strong computing power and large storage capacity, by following the suggestions in [66].

Therefore, we enriched the RDM′s dictionary, we expanded its trie and intentionally developed a

more computation-hungry prediction method.

Algorithm 7.1: RDM
precondition :An input sequence
postcondition :An updated dictionary of parsed phrases
remarks : dictionary = stores the parsed phrases, window = a variable length window of

previously seen symbols, Max_LZ_Length : the length of the longest parsed
phrase, w = a continuously updated phrase that drives the dictionary construction.

initialize :dictionary = null; window = null;
Max_LZ_Length = 0;

1 Loop
2 Wait for next symbol v;
3 if w.v in dictionary then
4 w = w.v;
5 else
6 add w.v in dictionary;
7 update Max_LZ_Length if neccessary;
8 w = null;

9 end
10 add v to window;
11 if length(window) > Max_LZ_Length then
12 delete window[0];
13 end
14 Update dictionary with all possible prefixes within window that include v;

15 Forever

7.4.1 Rich Dictionary Construction

What differentiates RDM from both ALZ and MPPM is that while they all parse both the input

sequence and the phrase that resides in the sliding window, only RDM attaches all these phrases

to the dictionary as part of the protocol. The net effect of this procedure is that the algorithms

develop completely different dictionaries, tries, sliding window sizes, which altogether affect the

prediction accuracy. Algorithm 7.1 presents the pseudocode for parsing and processing the input

sequence in RDM.

Proposition 7.1. When the length of the longest phrase parsed by ALZ, RDM and MPPM is

less than kmax MPPM constructs frequency trees that grow faster.
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Proof. While ALZ and RDM incorporate a window of variable length, MPPM uses a window

of fixed length kmax. This modification on the one hand enables MPPM to control the growth of

its associated trie (max trie depth = kmax) on the other hand allows the phrase that resides in the

sliding window (and drives the associated trie construction) to continuously increase its length

until it is kmax. Therefore, MPPM continuously adds larger phrases in its trie while RDM and

ALZ only when a new phrase is entered in each algorithms’ dictionary. a

Figure 7.2 illustrates the tries that the competing algorithms build (kmax = 5 for MPPM) by

superimposing them into a single trie for the input sequence “aaababbbbbaabccddcbaaaa”. We

see that MPPM builds the largest trie, however, this is temporal and will stop from happening

when the length of the longest phrase parsed by ALZ and RDM becomes greater than kmax. In

practice RDM′s resultant dictionary is richer and the associated trie larger both in span and

depth.
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FIGURE 7.2. The trie formed by RDM (Yellow) / LZ78 (Green) / LZU (Blue) / ALZ(Red) /
MPPM (Black) after parsing the symbol sequence “aaababbbbbaabccddcbaaaa”.

Proposition 7.2. The trie developed by ALZ is strictly contained within that created by RDM.

Proof. RDM adds into the dictionary the parsed phrases of the sliding window and thus,

increases the size of the sliding window earlier than ALZ (more precisely it updates earlier

the Max_LZ_Length parameter). This larger window, whilst incorporates at any time ALZ′s
equivalent window, produces more (trie span expansion) and longer phrases (trie depth expansion).

a
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7.4.2 RDM Complexity Analysis

RDM consumes space and time for data processing. The following analysis discusses the worst-

case conditions for the prediction process.

Proposition 7.3. The space complexity of RDM is O(n
3
2 ).

Proof. At each step, RDM parses the symbol string within the sliding window and either

updates the cardinality of an existing node or adds a new node to the trie. The worst pos-

sible case arises when RDM increases the maximum LZ phrase length and the parsed sub-

strings add new nodes to the trie. We represent the sequence of the parsed substrings as

ĝ = x1, x1x2, . . . , x1x2 . . . xk,where | ĝ| = n = k(k+1)
2 . A sequence of this form can be represented by

an order-k Markov model which stays of order-k through the next k symbols. In the worst case,

each parsed substring adds a new node to the trie, so at order k, the trie gains k2 nodes before

the model transitions to order k + 1. Therefore, the number of nodes generated in the trie by the

time the model attains order k is O(k3) = O(n
3
2 ), because k = O(

p
n ). a

Proposition 7.4. The time complexity of RDM is O(n
3
2 ).

Proof. The worst case in terms of runtime arises when RDM parses the worst sequence ĝ

because it will prompt the most updates. Creating or updating a node in the trie requires finding

the appropriate child of a given node along the path that phrase traced in the trie. RDM can

access a given node’s child in constant time. Therefore, it can find a node in time linear in the

depth of the trie. When the worst-case sequence ĝ is the case where | ĝ| = n and order k = O(
p

n )

there must be an update for every order up to k before the model transitions to order k + 1.

Consequently, by the time the model attains order k and the number of nodes generated in

RDM’s trie is O(n
3
2 ), the runtime is also O(n

3
2 ). a

7.5 RDM prediction mechanism

RDM employs two prediction mechanisms that are used simultaneously and are complementary

to each other. The first is purely probabilistic and is similar to that in [15], while the second is

deterministic, being based on trie traverse in order to make predictions. The first mechanism

considers different order Markov models and employs a blending strategy known as exclusion [15]

to build a probability distribution for each state (symbol) occurring in the input string. When

used it predicts the state with the highest probability value as the most likely action. We explain

how the first mechanism works by referring to Figure 7.3, which represents the trie constructed

by RDM for the sequence “aaababbbbbaabccddcbaaaa”.

The window maintained by the predictor represents the set of contexts RDM uses to compute

the probability of the next symbol. In our example, the last phrase “aaaa” (which is also the

current RDM window) is used. Within this phrase, the contexts that can be used are all suffixes
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FIGURE 7.3. Different cases (I, II, III, IV) w.r.t the symbol prediction process. The
numbers adjacent to each node represent its cardinality in the trie

within the phrase, except for the window itself (i.e., “aaa”, “aa”, “a” and the null context). Suppose

we want to calculate the probability that the next symbol is an “a”. We see that an “a” occurs one

out of two times that the context “aaa” appears. Therefore, P(a|aaa) = 1
2 . Then we fall back to the

order-2 context (i.e., the next lower order model) with probability Pesc(2) = 1
2 ; the so-called escape

factor of the order-2 model, which corresponds to the probability that the outcome is null. At this

level, we see that it occurs one “a”, one “aa” and one “bc” out of five times that the context “aa”

appears, therefore P(a|aa) = 1
5 . Then the algorithm falls back (escapes) to the order-1 model with

probability Pesc(1) = (5−(2+1))
5 = 2

5 . By using the same technique at the order-1 context, we see that

an “a” occurs two out of ten times that the “a” appears (the rest belonging to bigger phrases, e.g.,

“aa”, “ab”, “aba” etc.) and therefore we have P(a|a) = 2
10 . Then, for the last time, the algorithm

falls back (escapes) to the order-0 model with probability Pesc(0) = 2
10 or 1

5 . At that level, we see

an “a” two times out of the 23 symbols seen so far, and therefore we predict “a” with probability

P(a|∧) = 2
23 in the null context. Therefore, in our example, the blended probability of seeing an

“a” as the next symbol is:

(7.2)
1
2
+ 1

2
{
1
5
+ 2

5
[

2
10

+ 2
10

(
2

23
)]}.

The second prediction mechanism employs a purely deterministic approach to make predic-

tions. It uses the continuously updated LZ phrase “w” that drives the RDM dictionary construc-

tion (see the RDM′ pseudo-code) to traverse the trie and pinpoint to the current state of the

predictor. Note that at each state we record the prediction hits of the predictor regarding that

state in the past. RDM exploits the information (history) given from the higher order model and

predicts according to the following rules (see Figure 7.3):

• Case (I): Single branch at the higher order model → Predict the context given by the higher

order model. For example, when w = “aaa”, the predictor exploits the information given

from the 4th order model and predicts “a” as the next symbol.

• Case (II): No higher order model → Use the probabilistic prediction mechanism and predict

the context with the largest probability value, e.g., when w = “abb”.
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When more than one branches exist under the current state of the predictor, RDM calculates

the Kendall Tau Rank Distance (KTRD) between the ranking lists of the cardinalities and the

prediction hits between the states of the higher order model and uses it as a yardstick for the

prediction of the next state. In order to present how RDM works in such cases we will refer in

Figure 7.3 to the case where w = “b”, and we will assume that the prediction hits regarding the

states “a”, “b” and “c” of the 2nd order model are 2, 2 and 1, respectively. Thus, when w = “b”,

RDM ranks the states of the higher order model with regards to their cardinality and prediction

hits as follows:

State a b c

Rank by Cardinality 2 1 3

Rank by Prediction Hit 1 1 3

Then, RDM pairs each state with every other state and counts the number of times the

values in the two lists are not in the same order:

Pair Cardinality Prediction Hit Count

(a,b) 2 > 1 1 = 1 X

(a,c) 2 < 3 1 < 3

(b,c) 1 < 3 1 < 3

The calculation of KTRD is a simple process which is based on a merge sort algorithm and

requires time O(n logn). If n is the list size, the normalized KTRD is :

(7.3) KTRD = Discordant pairs
n∗ (n−1)/2

= 1
3∗ (3−1)/2

= 0.33.

Then RDM uses the first pair of branches it finds (from left to right) at the higher order model

and calculates the difference between their cardinalities. Then, the absolute value of the result is

divided by the cardinality of the current status of the predictor (we term it here RESULT) and

is compared with the KTRD. Note that when the higher order model consists of more than two

states then Case III and/or Case IV scenarios continue to be executed until all states have been

examined:

• Case (III): RESULT ≤ KTRD → Use the probabilistic prediction mechanism and predict

the context with the largest probability value. For example, when w = “b”, the first pair of

states we examine in the order-2 model is “a”, “b”. Thus, we have RESULT = |a(3)−b(4)|
b(8) =

|3−4|
8 = 0.125. Since RESULT < KTRD the state with the largest probability value between

the two is predicted.

• Case (IV): RESULT > KTRD → Predict the context with the larger cardinality. For

example, when w = “b”, if the pair of states under consideration is “b” and “c”, then we have

RESULT = |b(4)−c(1)|
b(8) = |4−1|

8 = 0.375. Since RESULT > KTRD it is predicted the state “b”

because it has the largest cardinality.
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Practically, the use of KTRD enables RDM to speed up the prediction process; it predicts

the state with the larger relative cardinality among the states of the higher order model as long

as the respective number of discordant pairs between the ranking lists of the cardinalities and

the prediction hits remains small.

7.6 RDM Performance Evaluation

We perform a simulation-based evaluation of the performance of RDM. To this end, we designed

experiments with vehicle itineraries that are segmented and are represented by datasets with

discrete symbol sequences that vary with respect to the number and repeatability of patterns

within them.

7.6.1 Simulation setting

The next paragraphs describe the competing algorithms, the datasets, and the performance

measures used.

7.6.1.1 Methods compared

We use the LZ78 [146] compression algorithm as the baseline algorithm for our comparisons due

to its simplicity. We implement and evaluate also LZU [15], ALZ [51] and MPPM [44] since the

superiority of Markovian predictors over other techniques has been explained in [66].

7.6.1.2 Datasets used

Since there are no publicly available datasets containing real vehicle movements over segmented

city roads, we created five datasets in order to evaluate the performance of RDM. Four simulate

vehicle itineraries over a road graph with and without noise, and the fifth is a realistic dataset

produced using SUMO an open traffic simulation suite.

The first dataset, named s4n0, consists of an alphabet of four different symbols (s4) and

contains no noise (n0). It has perfect regularity in terms of the vehicle patterns and a small

alphabet (few road-segmIDs) that creates conditions for all the algorithms to have good prediction

performance. In the second dataset, named s4n20, we deliberately disrupted the patterns to a

percentage of 20%. The third dataset was created by using 20 symbols and it is polluted with

10% noise (s20n10), whereas the fourth is similar to the third, but with 30% noise (s20n30). The

realistic dataset , named VolosItineraries, includes the mobility of 210 vehicles travelling in the

road network of the city of Volos(Greece) with different mobility patterns. The traffic simulations

are conducted with SUMO and the trace files are injected into our custom simulator in order to

perform prediction. Vehicles follow one of three different predefined routes, having a random

velocity with a mean value of 11 m/s and a variation of 5 m/s. By using big variation in vehicle
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velocities and by recording the position of each vehicle every T seconds (by default 5 seconds), we

reassured that the final recorded trace for each vehicle is different from any other even if they

follow the same path. Thus, each vehicle trace may contain repeating road segments representing

along with the transition from one road segment to another, the staying on a road segment due to

traffic congestion, road length and maximum velocity limit. The resulting alphabet created from

the realistic dataset consists of several dozen different symbols. The total simulation time is one

hour.

7.6.1.3 Performance measures

We use three measures to quantify performance. The first, is the prediction accuracy, which

represents the percentage of correct predictions per 1,000 symbols of the input sequence. The

second, is the processing time (milliseconds), in the form of the maximum time needed (worst case

scenario) for a single prediction in a 1,000 symbol subsequence of the input sequence; it portrays

the applicability of each competing algorithm in a real world Intelligent Transportation System

(ITS). The third is the number of trie nodes entered into the trie per 1000 symbols of the input

sequence; it is an abstract measure of the memory footprint independent of any implementation.

7.6.1.4 Location update techniques

We update the movement history of a vehicle whenever it crosses the boundaries of a new road

segment (with the use of the GPS technology) and every T seconds (by default 5 seconds). With

our method:

• We ensure that all distinct road segmIDs will be recorded; missed road segmIDs effect on

movement history is like noise in the symbol sequence, it disrupts the continuity of the

symbols and affects negatively the repetition of the symbol strings.

• We differentiate each vehicle’s movement patterns based on its habitual duration of stay in

a road segmID.

• We control the amount of information entered in the system.

7.6.2 Evaluation of the results

The simulations were run on a PC with Intel core 2 duo 1.7 MHz CPU, 2GB main memory, 80GB

hard disk 7200 rpm hard disk and MSWindows 7 64bit. The codes of the competing algorithms

were compiled in Matlab R2015a. On the other hand, a typical communications box supporting

Dedicated Short-Range Communications (DSRC), such as those commercialized by DELPHI runs

on an x86 architecture Intel core 2 duo 2 GHz CPU, with 2GB onboard DDR2 RAM, and onboard

8 GB Solid State Disk. Therefore, our algorithms can run on an industrial onboard unit.
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7.6.2.1 Tuning the RDM

We investigated the impact of blending the models of all orders and using different inter-record

time settings on RDM′s performance.

The depth factor parameter It enables RDM to exploit only a limited number of lower-order

models during the blending strategy [15]. Practically, when excluding some of the lower-order

models we bias the system to predict faster. However, we expect that happening at no cost to the

RDM′s performance, because the excluded models’ impact on the final probability assignment is

suppressed due to the escape factor. In Figure 7.4 we observe that RDM exhibits best performance

in terms of prediction accuracy when we set the depthFactor equal to 1. A setting equal to 1 means

that during the probability calculations we use only the order model “in which” the predictor

currently lies and the immediate previous one (larger values for this parameter imply exploitation

of smaller order models). In general, when depthFactor> 1 the performance remains (almost)

the same, as observed also in [115], however when a performance degradation exists it is due to

past vehicle mobility patterns (not concerning the present vehicle movement) that are taken into

account in the probability calculations.

Dataset 0 1 2 3 4 5 6 7 8 9 10

s4n0 0.9834 0.9835 0.9832 0.9831 0.9831 0.9831 0.9831 0.9831 0.9831 0.9831 0.9831

s4n20 0.9433 0.9433 0.9431 0.9431 0.9431 0.9431 0.9431 0.9431 0.9431 0.9431 0.9431

s20n10 0.7181 0.7184 0.7184 0.7184 0.7184 0.7184 0.7184 0.7184 0.7184 0.7184 0.7184

s20n30 0.3650 0.3650 0.3645 0.3613 0.3613 0.3613 0.3613 0.3613 0.3613 0.3613 0.3613

VolosItin 0.8466 0.8466 0.8466 0.8466 0.8466 0.8466 0.8466 0.8466 0.8466 0.8466 0.8466

Depth Factor

FIGURE 7.4. Impact of depthFactor parameter on RDM’s prediction accuracy.

The inter-record time - T It influences the frequency of the prediction process. We conducted

several experiments w.r.t the VolosItineraries dataset to explore the impact of various inter-record

time settings on the performance of RDM and the results are presented in Figure 7.5.
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FIGURE 7.5. Impact of inter-record Time on RDM′s performance.

We set T = 5 seconds as a tradeoff between RDM′s prediction accuracy performance (Fig-

ure 7.5 top plot) and the growth rate of its trie (Figure 7.5 bottom plot). We avoid using settings
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of T < 5 seconds and T > 10 seconds because they miss to provide the predictions in a timely

manner with each road segment change (which is a requirement for an online predictor). Note

that the respective performance of RDM when T = 1 second is deceptive as it is a consequence of

the plethora of symbols that enter in the system in short time. A setting of T = 10 seconds is also

avoided as it leads to a larger trie (see Figure 7.5 bottom plot). While a setting of T = 5 sec builds

a trie which is almost 1.7 times the respective trie when T = 30 seconds, this is acceptable to be

happening given the resource-rich V ANET environment that RDM is planned to work.

7.6.2.2 Comparison of the competing algorithms

The top plot in Figure 7.6 depicts the performance of the competitors regarding their prediction

accuracy for the first dataset (s4n0); RDM achieves almost 99% accuracy on the average whereas

its competitors have inferior performance and they stagnate to a prediction accuracy of 70% at

most. It is expected that all algorithms achieve fast convergence and very good performance

because the alphabet is small and the trajectories are noiseless (existence of very few and strong

patterns). The bottom plot in Figure 7.6 shows the performance of the algorithms regarding their

prediction accuracy for the second dataset (s4n20), which is noisier. RDM still exhibits very good

performance (around 95% on the average and a maximum of 98.5%), however, now it is able to

achieve more than 90% prediction accuracy only after consuming 4,000 symbols (contrast this to

a 95% prediction accuracy after consuming only 2,000 symbols for the previous plot) because of

the noise. The other algorithms’ performance is around 45% (on the average). Therefore, the rich

dictionary of RDM and its new prediction mechanism make RDM to be always better than its

competitors, and the performance gap widens (from 50% to 120% on the average) when noise is

introduced.
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In the next experiment we increase the size of the alphabet, and evaluate the competitors

under moderate (s20n10) and heavier (s20n30) noise. The results are illustrated in the two plots

of Figure 7.7. We expect that all algorithms’ performance will degrade significantly because

now the alphabet is larger. Indeed, RDM achieves 72% and 37% performance for these datasets

(contrast this to 99% and 95% accuracy in the previous two plots). Moreover, the distortion of the

patterns due to the introduction of noise decisively affects RDM′s performance, i.e., the prediction

accuracy drops from 72% to 37% for s20n10 and s20n30, respectively. This drop in performance

happens because RDM′s deterministic prediction model cannot be widely exploited and thus

it consults mainly the probabilistic model. However, RDM maintains the relative performance

gap with its competitors (50% - 60% better). As expected, the performance gap between RDM

and its competitors can not be as high as before, due a) to the larger alphabet, and b) to higher

noise percentage (10% and 30% versus 0% and 20%), which collectively destroys the repetitive

movement patterns.
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FIGURE 7.7. Prediction accuracy (%) for larger and noisier alphabets.

Figure 7.8 (top plot) depicts the performance of the competitors regarding their prediction

accuracy for the VolosItineraries dataset. RDM if the best performing argorithm; it converges to

a prediction accuracy of 80% after having consumed only 2.000 symbols and achieves a mean

prediction accuracy of 85% and a maximum of 90%. The performance of the other competitors is

an increasing function with respect to the number of symbols that enter in the system. However

they need to consume at least 5.000 symbols in order to converge to a prediction accuracy of 50%.

MPPM is the second best performing algorithm with a mean prediction accuracy of 63% and

a maximum of 76%. The rest of the competitors present a prediction accuracy of 57%, on the
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average. Therefore this realistic case reaffirms the earlier results, however now the performance

gap with the second best performing algorithm (MPPM) narrows to 35%.In sum, we have shown

in all the plots that RDM can achieve high prediction accuracy.
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FIGURE 7.8. Competing algorithms efficiency for the VolosItineraries dataset.

The middle plot of Figure 7.8 depicts the memory footprint of the algorithms in the form

of node count evolution in each respective trie as each symbol of the VolosItineraries dataset

is processed. It can be seen that the pace of trie growth is logarithmic with respect to the

sequence size for all the competitors except for MPPM where its trie stops growing after the

parsing of 10,000 symbols as a consequence of the fixed depth frequency tree of kmax = 5, it

constructs. As expected, RDM constructs the largest trie which was our initial goal so as to

achieve improved prediction accuracy. MPPM constructs the smallest trie followed by LZ78

and LZU because of the small dictionary they have. It is noteworthy that the RDM′s trie is the

double size the respective RDM′s trie and two orders of magnitude larger than the LZU ′s and

LZ78′s respective tries. Moreover, RDM and ALZ trie grows much faster, whereas LZU trie

size also starts growing quickly but stop increasing so fast at a lower level. It is noteworthy that

the large trie that RDM produces does not lead to significant communication overhead. In an

operational V ANET environment a single packet can accommodate a large number of trie nodes,

and in any case, if two vehicles need to exchange their mobility profile, they will not exchange

the full trie, but rather only the part of it (a few branches) that correspond to the particular area

where they are both moving at that particular time.

The bottom plot of Figure 7.8 depicts the per-symbol maximum prediction time needed (worst

case in a 1,000 symbol sequence) for the VolosItineraries dataset. Intuitively someone would
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expect the largest dictionary be the most time-consuming to process, however RDM succeeds

in being faster than the majority of its competitors and competitive to MPPM, because of the

hybrid mechanism it employs for prediction. It takes 6 milliseconds (worst case) for the RDM

to deliver predictions, which is fast enough to support real-time applications, such as vehicular

safety applications. On the other hand, MPPM requires the least processing effort which is due

to the fixed depth (kmax = 5) frequency tree that it constructs.

Overall, RDM is the best performing predictor; it constructs the largest trie, and it is not

the slowest algorithm. MPPM in general exhibits similar performance with ALZ except for

the realistic dataset (where it is better) thereby confirming the results in [98] and for the s4N0

dataset (where it is worse). ALZ is better than LZ78 in terms of accuracy for large alphabets and

input sequences with a small length, thus confirming the results in [51]. It also emerges that

ALZ is not significantly better than LZ78 in the other cases, thereby confirming the findings

in [101], but contradicting the findings in [51], because we used the exclusion strategy. Moreover,

ALZ converges faster than LZ78, which supports the results in [51] and all the predictors’ tries

are growing at a logarithmic pace (except MPPM), which mirrors the behavior reported in [101].

Finally, the creation of RDM addresses a comment that appeared in [115] stating that there is a

significant gap that needs be filled by the improvement of online Markov predictors.

7.7 Conclusions

Accurate prediction of vehicular trajectories in a V ANET environment is an essential mechanism

for ITSs. The prediction methods based on Markov predictors are particularly appealing, because

of their generality and prediction accuracy. Tailored for the resource-rich V ANET environments,

the proposed RDM Markov predictor remains highly efficient in terms of prediction accuracy

and per-symbol maximum prediction time. RDM is likely to be of immediate interest to ITSs

providers. By maintaining global dictionaries along with individual vehicle profile decoded from

updates, it will be possible to predict group behavior. In V ANETs, this can lead to better traffic

management, and more efficient bandwidth management and quality of service (QoS) in p2p

applications. As future work we plan to bound the growth of the frequency tree that RDM

produces and integrate RDM with novel V ANET routing protocols that can be used in safety or

ecorouting applications for ITS.
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8
A SIMULATION-BASED PERFORMANCE EVALUATION OF A

RANDOMIZED MIS-BASED CLUSTERING ALGORITHM FOR AD HOC

NETWORKS

8.1 Introduction

The present chapter investigates the problem of improving the scalability of a military

multilayer ad hoc network. Modern military battlefields consist of an increasing array of

entities with wireless communication and sensing capabilities. The coexistence of these

wireless entities constitutes the utilization of the wireless medium a very challenging task. We

build upon this fact and compare solutions proposed for scaling down ad hoc networks with large

numbers of nodes with the goal to highlight their pros and cons.

In the context of ad hoc networks providing a hierarchical organization has been identified as

a viable and efficient option for this problem in the literature. A wireless ad hoc network is a type

of wireless network which eliminates the complexities of infrastructure setup and administration,

by enabling existing nodes to create and join networks “on the fly”, anywhere, anytime, for

virtually any application. The decentralized nature of wireless ad hoc networks makes them

suitable for a variety of applications where central nodes can’t be relied on, and may improve the

scalability of wireless ad hoc networks, compared to wireless managed networks. The minimal

required configuration, the quick deployment, and the presence of dynamic and adaptive routing

Related publication [J3]: Dimitrios Papakostas, Dimitrios Katsaros. “A Simulation-based Performance Evaluation
of a Randomized MIS-based Clustering Algorithm for Ad Hoc Networks”, Simulation Modelling: Practice And
Theory (Elsevier), vol.48, pp.1-23, November, 2014.
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protocols, which allows them to be formed quickly, make ad hoc networks suitable for situations

like habitat monitoring, disaster relief, law enforcement operations, battle field communications,

target tracking and so on.

The dynamic nature of wireless ad hoc networks though, requires that solutions for multi

hop network protocols at all levels must be distributed. Of the solutions proposed for scaling

down networks with large numbers of nodes, network clustering is among the most investigated

for mobile ad hoc networks [6, 7, 10, 11, 26, 49, 74, 118, 125, 135, 144], for sensor ad hoc

networks [37, 142], for wireless mesh networks [5] and for vehicular ad hoc networks [82, 88, 127].

Other solutions of network management such as topology control [32] are remotely related to

this work.

The basic idea in clustering is that of grouping network nodes that are in physical proximity,

thereby providing the flat network a hierarchical organization, which is smaller in size, and

simpler to manage. The subsequent VBN construction uses the induced hierarchy to form

a communication infrastructure that is functional in providing desirable properties such as

minimizing communication overhead, choosing data aggregation points, increasing the probability

of aggregating redundant data, and consequently minimizing the overall power consumption.

In a clumpy approach, clustering algorithms can be divided in two major families. The first

with its roots in graph theory, exploits the localized network structure for estimating dynamically

the “clusterheads” (CHs), while the second provides mechanisms to ameliorate the fact that

nodes belonging to the backbone are solely responsible for carrying out all communication, thus

running out of energy very soon. Namely, the latter family addresses the energy consumption

problem, that is essentially proposes ways to rotate the role of CH among nodes of clusters e.g.,

the SP AN [27], the LEACH [57] and the HEED [141] protocols. The proposed methods use the

residual energy of each node in order to direct its decision about whether it will elect itself as a

CH or not. However, this family’s methods ignore topological features of the nodes.

The former family of protocols encompasses the most representative and successful solutions

in the area of network management. This is because while it exploits the wealth of information

extracted from the network topology particularities, it can also take into account application

specific requirements, such as Quality of Service (QoS). Moreover, algorithms of this family can

easily be combined with a round robin CH rotation method as was described in [37], and thus

exploit all the advantages the energy-efficient algorithms provide.

Recently, RanMIS [2] [3] – which belongs to the first family – was proposed as a message-

optimal algorithm; it employees a probabilistic technique for node clustering and enables every

node to independently decide on its role in the clustered network. It ensures rapid convergence,

while keeping the message overhead low. Its message complexity on CH selection was studied

analytically in [3], but its performance is still in question with respect to the delay it incurs

for the clustering protocol termination, for the “stability” of the created clusters in case of node

failures, and so on. The focus of this chapter is exactly to fill this gap by conducting a detailed
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experimental evaluation of RanMIS by simulation.

RanMIS competitors were selected from two distinct protocol categories1. The first category is

oriented on providing the network with a two-layer hierarchical organization comprised by groups

of nodes, i.e., clusters. One “special” node of each cluster (the CH) participates in the so-called

V BN; the backbone nodes form a DS over the flat network topology. This means that, each node

that is not in the backbone, has at least one backbone node as its neighbor. Backbone nodes are

joined via gateway nodes. Apparently, if the flat network is connected, it is deterministically

guaranteed, that the backbone is connected as well. Distributed Clustering Algorithm (DCA) is a

high-performance representative of this category.

The second category retains the layered structure of the first category, and it is oriented on

facilitating routing without the need of gateway nodes. The concept behind this category is that

of building a CDS directly, without firstly selecting CHs and then joining them. It was initially

introduced by Das et al. in [34] when they proposed the concept of creating a communication

spine inside a flat network topology in order to support unicast, multicast, and fault-tolerant

routing within an ad hoc network. WuLi is a practical and robust representative of this category.

Contrary to RanMIS’s randomized nature, its competitors use iterative clustering techniques,

meaning that a node waits for a specific event to occur or certain nodes to decide about their role

before making a decision themselves.

8.1.1 Motivation and Contributions

The problem of providing a hierarchical organization for ad hoc networks is of crucial importance

due to the widespread deployment of such networks (e.g., mobile ad hoc networks, sensor networks,

vehicular ad hoc networks) and their scalability problems. Despite the fact that a really large

number of algorithms have been proposed during the last decade for performing clustering,

the proposal and study of protocols which exhibit low message complexity, fast convergence,

incremental backbone maintenance, resilience to hub node failures, connectivity preservation,

and backbone stability is still in quest. The considered clustering algorithms seem to encompass

all the aforementioned features and therefore their detailed, joint investigation is a significant

task for the area of ad hoc network management.

In this context, the present chapter makes the following contributions:

• We investigate for the first time by detailed simulation the performance of RanMIS. In

particular:

– We confirm its message optimality for backbone construction across all examined

network topologies.

1More detailed arguments about the selection of competitors can be found at subsection 8.3.4

121



CHAPTER 8. EVALUATION OF A CLUSTERING ALGORITHM FOR AD HOC NETWORKS

– We reveal the impact of parameter D on the number of rounds before RanMIS termi-

nates; moreover, we prove its independence on each node’s neighborhood size, contrary

to RanMIS’ original article suggestion.

– We question the value of parameter M as suggested by the authors of RanMIS.

– We illustrate RanMIS’s performance lagging with respect to the number of rounds

before termination, which means that it will incur significant delay for clustering.

– We provide a characterization for the distribution of nodes in clusters for the competing

protocols, and show RanMIS’s drawback in that it produces ‘long’ backbones, which

implies increased delays for message routing.

• We propose an improvement to WuLi, namely WuLi? appropriate for cluster rebuilding

processes in case of node failure.

• We develop a rich comparison framework for the ad hoc network clustering protocols,

employing three families of performance measures, namely for protocol cost, for backbone

description and for robustness.

• We provide a detailed comparison of the algorithms for these families of measures for many

network topologies (with different size and density).

The rest of this chapter is organized as follows: in Section 8.2, we briefly describe the operation

of RanMIS; in Section 8.3 we firstly describe the operation of RanMIS’s competitors and then

provide the detailed performance evaluation of RanMIS against them; finally, in Section 8.4 we

conclude the chapter.

8.2 The Beep-based randomized MIS algorithm

RanMIS [3] considers the problem of computing a MIS, a fundamental distributed computing

procedure, that seeks to elect a set of local leaders in a network.

It generates the maximal set of nodes in such a manner that, no two of them are neighbors,

by using an extremely harsh broadcast model that relies only on carrier sensing. Since the set is

maximal, every node in the network is either in the MIS or a neighbor of a node in the MIS.

The model consists of an anonymous broadcast network in which nodes have no knowledge

about the topology of the network. It has its roots to the solution of a similar problem that evolves

during the development of the fly’s nervous system, when Sensory Organ Precursor (SOP) cells

are chosen [3].

According to the specified assumptions, nodes receive as input, an upper bound on the number

of nodes in the network n, and an upper bound D, on the number of neighbors any node can have

(if no such bound is known, then D is set to n). Furthermore, it is assumed that they all wake up
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together at the same synchronous round (and start executing the algorithm), also that they can

detect collisions, and finally that no failures occur.

The algorithm proceeds in log D phases, each consisting of M log n steps, where M is a

constant. Initially, all nodes are active. Each step in each phase i consists of two exchanges.

In the first exchange, each active node broadcasts a message to its neighbors with probability

pi. Such as in the biological model, the probability pi increases with i. In the second exchange, a

node that has broadcasted a message in the first exchange joins the MIS if none of its neighbors

had broadcasted at the first exchange. Such node broadcasts again a message to its neighbors,

telling them to become inactive, and exits the algorithm.

For the sake of completeness we give in Figure 8.1 the pseudocode of the RanMIS algorithm [3]

which is synchronously executed by all nodes .

Algorithm 8.1: RanMIS(n, D) at node u
remarks : n: number of participating nodes in network topology,

u: node under consideration,
D: upper bound on the number of neighbors,
B: 1 bit message,
M: constant

1 for i ← 0 to log D do
2 for j ← 0 to M log n do

/* exchange 1 */

3 v = 0;
4 With probability 1/2log D - i,
5 broadcast B to neighbors;
6 set v = 1;
7 if received message from neighbor then
8 v = 0;

/* exchange 2 */

9 if v = 1 then
10 v = 0;
11 Broadcast B;
12 join MIS;
13 exit the algorithm.

14 end
15 else
16 if received message B in this exchange then
17 mark node u inactive;
18 exit the algorithm.

19 end
20 end
21 end
22 end
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8.3 Performance evaluation

The exhaustively investigated in the past competitor algorithms involved in our analysis, apart

from the fact that they belong to different graph-theoretic classes, were chosen basically because

of their distinct diversification in the degree of localization compared to RanMIS.

The first class, which enables WuLi [135], exhibit a high degree of localization. In such a class

as soon as a node has collected information about its surrounding topology, it is able to decide

whether it will be part of the backbone or not. The only information it needs to wait for, is the

identity of the node in its (h hop) neighborhood. In the second class, the degree of localization

shown by the algorithms is limited with respect to that of the first. Such protocols implement a

distributed version of the heuristics for finding an independent set of nodes which is maximal, and

a dominating set which is minimal. As a representative algorithm of this class we consider the

DCA [10]. Being maximum, the independent set produced by DCA is also a minimal dominating

set.

WuLi is a very simple distributed procedure consisting of a few local rules, the execution of

which creates the desired CDS. Every node v exchanges its neighbor list with all its neighbors.

A node set itself has a dominating node if it has at least two unconnected neighbors. In order

to reduce the size of a CDS, the original protocol presents two pruning rules. According to the

first rule, a node deletes itself from the CDS when its close neighbor set, which includes all of

its direct neighbors as well as itself, is completely included in the neighbor set of a neighboring

dominating node and it has smaller ID than the neighboring dominating node. According to the

second rule, a node deletes itself from the CDS when its open neighbor set, which includes all of

its direct neighbors, is completely included in the neighbor sets of two connected neighboring

dominating nodes and has the smallest Id.

The DCA protocol assumes quasi-stationary nodes with real-valued weights, which are

initially UNDECIDED. Node weights induce a total ordering of the nodes without any ties

because node weights reflect real numbers. During the execution of the algorithm each node

will decide to be IN or to be OUT, of the independent set. A node decides when all its neighbors

with larger weight have decided. When the time comes, a node decides to be OUT if one of its

neighbors is IN. Otherwise it decides to be IN. The IN nodes form the minimal dominating set

required for clustering. The execution time depends on possible chains of dependency between

the nodes, a negative consequence of the reduced localization DCA presents. The node with the

smallest weight has to wait for all other nodes in the chain.

In subsection 8.3.1 we briefly introduce the graph model used in our simulation. Then in

subsection 8.3.2 we present the simulation platform that produced all the network topologies

used in the performance analysis. In subsection 8.3.3 we give the performance metrics of the

protocols comparison and finally in subsection 8.3.4, we display the simulation results.
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8.3.1 Simulation Model

As in most studies in multihop wireless networks, we used unit disk random graphs to represent

the network topologies used in the performance analysis. A unit disk graph is determined by node

positions and a fixed communication range R, for all nodes. The produced topologies which more

precisely are described as Constrained - Connected Random Unit Graphs (C-CRUG), because

of the constrains the participating nodes are obliged to adhere, were constructed in MATLAB

by taking in to consideration two crucial independent variables, concerning the final network

connectivity, that is the network density, which is perfectly expressed by the degree d of each

node, and the node population n.

8.3.2 Simulation platform

The graphs were normally generated by placing nodes randomly and independently from each

other with the help of a modified version of Minimum degree proximity algorithm (MIN-DPA) [8],

a C-CRUG generator, which aims to distribute node degrees more uniformly while maintaining

connectivity. The idea is to place each new node in the vicinity of the node that has the smallest

number of neighbors, while preserving a minimum distance to increase the probability of achiev-

ing a connected graph. The modified version of it though, involves the notion that the average

degree of the topology and the transmission range of a node, were predefined.

The simulations refer to scenarios in which n static wireless nodes with maximum transmis-

sion range R are randomly and uniformly scattered in a geographic area of side L. We make the

assumption that two nodes are neighbors if and only if their Euclidean distance is less than R.

We emphasize that nodes start the protocol execution at the same time and run the clustering

and backbone formation algorithms to form a hierarchical multi-hop ad hoc network.

In our simulations R has been set to 50m, the number of nodes n has been assigned the

values 100, 500, 1000 and 5000 while L has been set accordingly (see Table 8.1) to influence an

average node degree of 4, 7, 10 and 15. This allowed us to test the protocols on increasingly dense

networks, from (moderately) sparse to dense networks.

TABLE 8.1. L Parameter Values

Nodes Degree#4 Degree#7 Degree#10 Degree#15

100 500 400 250 200
500 2000 1500 750 500
1000 5000 4000 1000 700
5000 7000 5000 2000 1500

In order to diminish any statistical errors all tests were repeated for 1000 times and the data

used in our graphs are all average values of the results. A short description of the simulation

parameters is given in Table 8.2.
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TABLE 8.2. Interpretation of Used Symbols

Symbol Usage Default value
n Number of Nodes in Network
D Intended Number of Neighbors 24
d Average Node Degree
M Constant 32
R Node Transmission range
L Axis Length (in meters) of AOR

(Area Of Responsibility)

8.3.3 Performance metrics

The assessment of the competing protocols, which was also implemented in MATLAB, were done

along three dimensions: the first dimension portrays the cost (in delay and energy consumption)

incurred by the protocols, the second concerns the characteristics of the resulting backbone, and

the third one deals with the resilience of the resulting spanner to node failures.

Metrics for protocol cost. This family of measures, includes the protocol duration which is

a direct measure of the delay incurred until the network spanner is established, and the total

number of messages exchanged among nodes which is a measure of the energy consumed by the

network, especially crucial for assessing the usefulness of clustering to networks with energy

constrained nodes.

Protocol duration. It is the number of rounds required by the protocol to complete the

procedure of backbone formation.

Total number of messages transmitted. We deal with two different situations (cases) where

message exchange takes place among network nodes. The first situation concerns the backbone

construction operation, i.e., the selection of network nodes which will take on the role of a CH,

and the declaration of ‘attachment’ of non−CH nodes to a CH. The second situation occurs when

a backbone node fails. We don’t examine failures of non-CH nodes2 because message exchange in

such scenarios is unrelated to the clustering protocol running. It is obvious that, if the number

of messages exchanged for backbone maintenance is high, then local reclustering may impose

a non-negligible burden to the network, and a backbone recalculation should take place. To

uncouple our measurements from MAC particularities and focus only to the pure clustering

protocol performance, we assume an ideal MAC layer with no provision for retransmissions in

case of collisions exist.

Metrics for backbone description. This family of measures assess the backbone’s ‘layout’.

2either gateway nodes which are used by RanMIS and DCA in order to achieve backbone connectivity or plain
nodes
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Backbone size. It is the number of the network nodes that comprise the backbone. A smaller

backbone is desirable for minimizing the routing overhead. For instance, in sensor networks with

nodes that can turn off their radio interface (energy saving sleep mode), the backbone size is a

measure of how many nodes need to stay awake for data transport. Usually, the nodes in the

backbone stay up or have a higher duty cycle for guaranteeing routes to the sink, and hence the

smaller the backbone the more nodes can be in energy conserving mode. On the other hand, a very

small backbone could result in situations where CH-to-member communication would require

either excessive amount of energy to reach the node and vice versa, or multi-hop communication

within the cluster.

Cluster cardinality distribution. It is the distribution of the number of members for each

generated cluster.

Route length. If we consider the subgraph Gb of the network induced by the backbone

construction (Gb is the graph where there are no links between ordinary nodes), then this metric

gives a measure of how well a routing protocol can perform over the backbone.

Inter-clusterhead distance distribution. This distribution records the distances among neigh-

boring CHs. The larger this distance is the better for the performance of the clustering protocol,

since, for instance, a three-hop distance among clusterheads would avoid hidden terminal prob-

lems and guarantees the ‘independence’ of clusterhead transmission.

Metrics for robustness. This evaluation is useful in cases where node failures are anticipated.

There are various definitions for evaluating the robustness of a network [31, 107]. In general, the

“robustness” of a network measures its resilience (in terms of connectivity) to the removal of edges

or vertices. Robustness can be formalized in a variety of ways, depending on how connectivity is

measured, whether edges or vertices are removed, and how the edges or vertices to be removed

are chosen.

In our experimentations, we consider a wireless ad hoc network where nodes are removed

randomly until backbone connectivity is lost. Figure 8.1, depicts a section of a larger wireless

network where a message is transmitted from node22 to node23. It is obvious that the scenario

under consideration deals with an MIS network topology where gateway nodes are used to

forward any transmitted messages. Adjacent CHs differ in their fill in colors and any cluster-

members have a border line color which is in consistency with their CH fill in color. A red dotted

line is used to represent the shortest path for the current transmission. We emphasize that in

our tests whenever a clustermember faces the dilemma of choosing between more than one CH

candidates then by default it selects the one with the smaller Id.

We assume that nodes have an inherent capability to identify in their neighborhood either

a failed CH as clustermembers or a failed gateway node as CHs. Taken this assumption in to

consideration, as soon as a node failure is perceived, each competitor protocol strives to solve

locally any network inefficiencies so that the connectivity is maintained and no uncovered nodes
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FIGURE 8.1. Shortest Path transmission when all nodes are in working condition.

exist. The metric considers an upper bound of 3-hop message retransmission in order to establish

connection between CHs. We examined two different scenarios for robustness depending on the

role of the failed node in the network.

Network substratum Robustness is defined as the number of non-CH nodes whose removal

(because of failure or energy depletion) causes backbone disconnection. This metric is directly

related to RanMIS and DCA protocols who build an MIS network topology and use as gateways

non-CH nodes to maintain backbone connectivity. WuLi who builds CDS and is presented also

in the diagram illustrates the total number of non-CH nodes in the network because failure of

non-CH nodes has negligible effects to backbone connectivity. Intuitively network performance is

connected to the cardinality of the clusters and it is straightforward that a populated cluster is

more desirable than a sparse occupied.

In Figure 8.2, we see the impact of a gateway failure to the shortest path construction. If the

failure concerns a non-gateway node then network connectivity won’t be affected at all.

We addressed network substratum failures as follows:

• Initially, we run Dijkstra’s routing algorithm on the whole network topology to identify if

backbone connectivity is maintained after node failure.

• If so, which means that the gateway role on the cluster who suffered the failure was

assigned to another node without any further consequences to the backbone connectivity,

we repeat the scenario with another node until backbone connectivity is lost.

• If not, which means that node failure had catastrophic consequences to the backbone

connectivity, we use the total number of the failed nodes that each protocol could bear prior

to loss of backbone connectivity to describe the network resilience to failures of such kind

w.r.t. network size and its density.
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FIGURE 8.2. Shortest Path recalculation as a result to gateway node failure.

Backbone Robustness, is defined as the number of backbone nodes whose removal (because of

failure or energy depletion) causes backbone disconnection or the uncovering of ordinary nodes.

This metric provides an indirect measure on how long the network will be operational before

requiring a backbone recomputation.

We use the network topologies presented in Figures 8.1, 8.3, 8.4 to describe the way we

address CH node failures with RanMIS, DCA, WuLi protocols, respectively.
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FIGURE 8.3. Shortest Path for a DCA network topology.

In Figure 8.5, we see the impact of an RanMIS CH failure to the shortest path construction.

We addressed RanMIS CH failures as follows:

• We locate any resultant orphan clustermembers due to CH failure.

• If any, we attempt to associate them with a neighboring CH.
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FIGURE 8.4. Shortest Path for a WuLi network topology.
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FIGURE 8.5. Shortest Path recalculation as a result to RanMIS CH node failure.

• Remaining orphan clustermembers become CH candidates, and rerun the protocol.

• Then we run Dijkstra’s routing algorithm on the whole network topology to identify if

backbone connectivity is maintained.

• If so, we repeat the scenario with another one CH until backbone connectivity is lost.

• If not, we use the total number of the removed nodes that each protocol could bear prior

to loss of backbone connectivity to describe the network resilience to failures of such kind

w.r.t. network size and its density.

In Figure 8.6, we see the impact of a DCA CH failure to the shortest path construction.

We addressed DCA CH failures as follows:

• We locate any resultant orphan clustermembers due to CH failure.
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FIGURE 8.6. Shortest Path recalculation as a result to DCA CH node failure.

• If any, their status will be determined in sequence behind any undecided neighboring node

with larger weight.

• When appropriate we associate orphan clustermembers with a CH whose weight is the

larger in the neighborhood.

• Remaining orphan clustermembers become CH candidates, rerun the protocol and finally

are announced CHs.

• Then we run Dijkstra’s routing algorithm on the whole network topology to identify if

backbone connectivity is maintained.

• If so, we repeat the scenario with another one CH until backbone connectivity is lost.

• If not, we use the total number of the removed nodes that each protocol could bear prior

to loss of backbone connectivity to describe the network resilience to failures of such kind

w.r.t. network size and its density.

In Figure 8.7, we see the impact of a WuLi CH failure to the shortest path construction.

We addressed WuLi CH failures as follows:

• Initially, we locate any CH whose role was determined by the presence of the failed node,

when it was in working condition, and we mark it as an orphan clustermember.

• Any clustermembers that the former CH had, are marked as orphan clustermembers also.

• Afterwards, we locate any resultant orphan clustermembers due to CH failure.

• Subsequently, we attempt to associate orphan clustermembers with a neighboring CH.

131



CHAPTER 8. EVALUATION OF A CLUSTERING ALGORITHM FOR AD HOC NETWORKS

22

28

29

35

14

18

27

33

24

23

16

34

32

12

31

29

36

30

26 13

15

17

FIGURE 8.7. Shortest Path recalculation as a result to WuLi CH node failure.

• Then we run Dijkstra’s routing algorithm on the whole network topology to identify if

backbone connectivity is maintained.

• If so, we repeat the scenario with another one CH until backbone connectivity is lost.

• If not, we use the total number of the removed nodes that each protocol could bear, prior

to loss of backbone connectivity, to describe the network resilience to failures of such kind

w.r.t. network size and its density.

• It is worth to mention that, uncovered clustermembers are taken into account and cause

the termination of protocol execution when discovered.

The way WuLi addresses CH failures which was proposed by its authors in [135] has been

proven inefficient concerning the overall energy consumption to backbone maintenance. It is

our belief that once a network structure has been established the effort should be to preserve it

as long as the connectivity is maintained. We were motivated by this assumption to present a

modified version of WuLi concerning the way it deals with CH node failures. In Figure 8.8, we

see the impact of a WuLi CH failure to the shortest path construction when using the Proposed

WuLi protocol.

In our proposed version of WuLi? we address CH failures as follows:

• Initially, we deal with substratum clustermembers to identify whether they can be assigned

a new role due to CH failure or not.

• Subsequently, we attempt to associate orphan clustermembers with a neighboring CH.

• Then we run Dijkstra’s routing algorithm on the whole network topology to identify if

backbone connectivity is maintained.
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FIGURE 8.8. Shortest Path recalculation as a result to WuLi? CH node failure.

• If so, we repeat the scenario with another one CH until backbone connectivity is lost.

• If not, we use the total number of the removed nodes that each protocol could bear, prior

to loss of backbone connectivity, to describe the network resilience to failures of such kind

w.r.t. network size and its density.

• Uncovered clustermembers are taken into account also and cause the termination of

protocol execution when discovered.

8.3.4 Simulation results

In order to evaluate the performance of RanMIS, we selected two graph-theoretic ad hoc networks

clustering algorithms, namely the WuLi and DCA, both of which create dominating sets, the

former produces a connected dominating set and the latter produces a maximum independent

set. These algorithms are simple, practical, extremely popular in the clustering community 3 and

comprise the base for the development of many similar clustering algorithms [42]. We performed

a series of experiments to compare the performance of RanMIS against these algorithms. The

first set of experiments concerns the tuning of RanMIS with respect to its parameters, and then

it follows its comparison against its competitors.

8.3.4.1 Tuning of RanMIS

The original article which introduced RanMIS [3], described two parameters that control its

operation and affect its overall performance. The first of these parameters, D, concerns the

estimated size of neighborhood of each node, while the second, M, is a constant related to the

3They both have an excessive number of citations. See http://scholar.google.com/scholar?cites=

7672109277762563412&as_sdt=2005&sciodt=0,5&hl=en and http://scholar.google.com/scholar?cites=

13992908027776879246&as_sdt=2005&sciodt=0,5&hl=en.
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number of rounds required for the algorithm to complete the backbone construction. These

parameters are independent and thus we have to make an initial choice for one of them (e.g., for

D) and investigate the other (e.g., M), and vice versa.

Impact of parameter D. To evaluate the impact of parameter D on RanMIS’s performance, we

conducted a series of experiments for various values of D, 6, 12, 24 36, and 48 and for various

performance measures. D controls the maximum number of rounds RanMIS has in order to

complete the backbone construction and it is consistent with the size of each node’s neighborhood.

That is because in a large neighborhood the intuition is that the likelihood to have a simultaneous

transmission and a resultant collision between two adjacent transmitting nodes is increased, and

consequently more protocol rounds will be required by the affected nodes in order to decide about

their status.

In Figure 8.9, we see the the number of rounds required by RanMIS to complete backbone

construction for various values of D w.r.t. network size and its density.
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FIGURE 8.9. Impact of D on the number of Rounds required by RanMIS to complete
backbone construction w.r.t. network size and its density.

The first observation is that, in accordance with our intuition, when the value of D increases,

the number of rounds required by RanMIS to complete backbone construction increases for every

network size. This consequence derives from the fact that there is a direct relation between the

probability a node has in order to be chosen as a CH candidate and the setting of parameter D

(cf. Algorithm 8.1). The higher the setting of D the lesser the probability for a node to become

a CH and if so, the probability for a neighboring node to become a CH is also small (thus, we

avoid any unwanted message retransmissions due to collisions). The second observation is that
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while the number of rounds is almost irrelevant to network density for a given network size, the

number of rounds increases linearly to the network size. This is due to the fact that more clusters

will be developed and therefore the competition for becoming a CH increases. It is obvious that

the less the required rounds to complete the backbone is, the best for the protocol is (namely in

Figure 8.9 this observation favors D setting of 6 and 12 to the other). Though, to conclude which

is the best choice for parameter D, we must examine also the number of transmitted messages

and the number of clusters created for the various choices of D (cf. Figure 8.10 and Figure 8.11).

Thus, we do not conclude at this point that the best value for D is 6.

In Figure 8.10, we see the number of messages exchanged by RanMIS for backbone construc-

tion for various values of D w.r.t. network size and its density.
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FIGURE 8.10. Impact of D on the number of messages exchanged by RanMIS for
backbone construction w.r.t. network size and its density.

The situation here is reversed with respect to what we saw in Figure 8.9. In general, the

number of messages required by RanMIS to complete the backbone construction process decreases

for increasing values of D. Therefore, so far the best choice for D is the one that achieves a balance

between the number of rounds and the messages transmitted, i.e., D = 24 (we will revisit this issue

when commenting the next figure). Additionally, examining the figure, we observe a decreasing

number of transmitted messages for increasing network density (for every network size). This is

because when a node declares itself as a CH, then all of its neighbors (and there are too many

nodes in dense networks) immediately attach themselves to this node. The final observation is

that the relative ordering of the performance curves for various values of D is maintained across

different densities (with some statistically insignificant variation for very small networks).

In Figure 8.11, we see clusters produced by RanMIS for backbone construction w.r.t. network
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FIGURE 8.11. Impact of D on the number of clusters produced by RanMIS for backbone
construction w.r.t. network size and its density.

size and its density for various values of D.

The main observation is that the number of clusters produced is not affected by parameter D.

However, protocol execution drives to decreasing number of produced clusters w.r.t. increasing

network density for every network size, and the explanation for that is similar to the one for the

previous figure.

Overall, a value of D = 24 is the most appropriate choice since it achieves a good trade-

off between network backbone construction delay (due to many rounds) and the transmitted

messages.

Impact of parameter M. To evaluate the impact of constant M on RanMIS’s performance,

we conducted a series of experiments for various values of M = 2x (x = 0 - 7), and for various

performance measures. For these sets of experiments, the value of D was set equal to 24 (cf.

subsection Impact of parameter D.)

Initially, we examined the impact of M on the number of rounds required by RanMIS to

complete the backbone construction. In Figure 8.12, it is clear that an M = 8 setting supersedes

any other for practically all network instances (except perhaps for 100 nodes), basically because

less work in the inner loop of RanMIS (see Algorithm 8.1), signifies less residency in a low

probability state for a node to become a CH. Practically, with small settings of M, we bias the

system to converge faster. The same observation holds in Figure 8.13, for even smaller values

of M (namely 1–8).

The disadvantage though, of a small M setting is that it might create severe competition
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FIGURE 8.12. Impact of M on the number of rounds required by RanMIS to complete
backbone construction w.r.t. network size and its density.
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FIGURE 8.13. Impact of M on the number of rounds required by RanMIS to complete
backbone construction w.r.t. network size and its density.

for the role of CH among neighboring nodes, and since M affects also the maximum number of

rounds that are available to the protocol for backbone construction, it is possible to drive it not to

converge. Figure 8.14 reflects our thoughts, where for small settings of M (e.g 1) more than 90%

of the available rounds are used by RanMIS in order to converge.
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FIGURE 8.14. % percentage coverage of Max number of rounds available to RanMIS in
order to converge w.r.t. M parameter setting.
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FIGURE 8.15. Impact of M on the number of messages exchanged by RanMIS for
backbone construction w.r.t. network size and its density.

In Figures 8.15, 8.16, we see the impact of M on the number of messages exchanged by

RanMIS to complete the backbone. The observation is that for practically all network instances

the number of transmitted messages is unrelated to M.

In Figure 8.17, 8.18, we see the impact of M on the number of clusters produced by RanMIS.
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FIGURE 8.16. Impact of M on the number of messages exchanged by RanMIS for
backbone construction w.r.t. network size and its density.

Similarly, the number of clusters produced is not affected by M (see Figure 8.17).
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FIGURE 8.17. Impact of M on the number of clusters produced by RanMIS w.r.t. net-
work size and its density.

Overall, it seems that the authors’ suggestion of M = 34 is not the best choice; it is only

marginally good for small networks (100 nodes) when we want to minimize the number of

transmitted messages – the difference though is not really significant. We concluded though, that
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FIGURE 8.18. Impact of M on the number of clusters produced by RanMIS w.r.t. net-
work size and its density.

we should be conservative with the setting of M, especially when we have to deal with real life

network topologies. Nevertheless, in the rest of this chapter, we follow the RanMIS’s creators

suggestion and set the value of M equal to 32.

8.3.4.2 Comparison of competing clustering protocols

The next paragraphs unveil the nature of the competing protocols concerning their operational

cost, their network topology uniqueness and their backbone robustness.

Results concerning the protocol cost. In this series of experiments, we measured the number

of rounds required by each protocol to complete and also the total number of messages transmitted.

In Figures 8.19 and 8.20, we see the relative comparison of the algorithms.

As far as the number of protocol rounds is concerned, we observe that DCA is the clear winner

for all network instances. The performance of the algorithms is consistent with the what the

theory predicts for them; thus we dot not comment further on this issue.

As far as the number of transmitted messages for backbone construction is concerned, we

observe that RanMIS is now the clear winner confirming its theoretical behavior. Its performance

gap from the other competitors is stable across all network topologies. DCA sends around 40%

more messages than RanMIS does, and WuLi sends around 60% more messages than RanMIS.

Therefore, even though it takes more time to RanMIS to construct the backbone due to its

probabilistic nature, it does this with far less messages than its competitors.
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FIGURE 8.19. Rounds required by each competitor algorithm to complete backbone
construction w.r.t. network size and its density.
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FIGURE 8.20. Messages required by each competitor algorithm to complete backbone
construction w.r.t. network size and its density.

As far as the number of transmitted messages for backbone reconstruction when a node dies,

are presented in Figure 8.21. In this figure, apart from the three competitors we present also

the proposed improvement to WuLi which was described in page 132. The first observation is

that this proposed improvement is the best performing algorithm which is expected, since the
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FIGURE 8.21. Impact of network size and its density on messages required to rebuild
locally the broken backbone in case of a CH failure.

central idea behind its development was how to least modify the existing network backbone,

and therefore transmit as few messages as possible. The second best performing algorithm is

RanMIS, which is also expected since it is message optimal. The performance of all algorithms

deteriorates for denser networks, because a single node’s failure affects a lot of neighboring nodes,

but their performance is not significantly affected by the network size.

Results concerning the backbone description. In Figures 8.22–8.29 we present the perfor-

mance of the protocols for the metrics belonging to the category of “backbone description”.

The number of generated clusters by each protocol is presented in Figure 8.22. The first

observation is that RanMIS and DCA produce almost the same number of clusters; even though

their difference is indistinguishable in the figure, their difference is less than 1% which can be

attributed to statistical variation. The reason for this resemblance is that both algorithms are

building maximum independent sets using either a weight for each node (assigned dynamically

or statically) in the case of DCA or using randomization in choice in the case of RanMIS. On

the other hand, WuLi produces too many clusters, since it is mandatory to create connected

dominating sets, whereas the former two algorithms are building plain dominating sets. Finally,

we observe that the number of generated clusters reduces with increasing density, since in dense

networks more nodes are able to find a CH (i.e., dominator) in their 1-hop neighborhood.

Next, we evaluated the cluster cardinality distribution for various densities of the network.

The results are illustrated in Figures 8.23–8.26. At this point we should emphasize that this
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FIGURE 8.22. Clusters produced by each competitor algorithm w.r.t. network size and
its density.

distribution should in general be ‘bell-shaped’ or look like any distribution with probability mass

concentrated around the average node degree of the topology. In Figures 8.23 and 8.24, we see

that this property is achieved by RanMIS and DCA for sparse networks, but it is not achieved for

dense networks (in Figures 8.25 and 8.26). In these last two figures, it seems that a significant

percentage of clusters – around 22% of them – contain very few nodes, i.e., 1 or 2, including

the clusterhead. On the other hand, WuLi exhibits an undesirable pattern across all network

topologies, since more than 70% of its clusters contain 1 or 2 nodes, which is also a consequence

of the large numbers of clusters produced (see Figure 8.22).

The diameter4 length of the produced backbone by each protocol is presented in Figure 8.27

(in meters) and in Figure 8.28 (in hops). The common observation is that WuLi is the best

performing algorithm which is due to the fact that it produces CDSs and thus there are no

gateway nodes intervening among CHs so as to increase the diameter. The second observation is

that the diameter in general decreases with increasing network density, since in dense networks

it easier to find short routes for any pair of nodes. In some cases where the topology is peculiar,

the diameter increases in denser networks (e.g., network with 500 nodes with density equal to 7).

In Figure 8.29 we illustrate the percentage of adjacent CHs that reside at a distance of

3-hops from each other. Apparently, WuLi produces CHs at 1-hop distance from each other, and

therefore we do not include it in the plot. For the other two algorithms, which produce maximum

independent sets, it holds by the definition of the MIS, that any two adjacent CHs will be either

at a distance of 2 hops or at a distance of 3 hops, with the latter being the preferred one (see

4The largest of the shortest paths for any pair of nodes.
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FIGURE 8.23. Distribution of nodes in clusters after backbone construction w.r.t. net-
work size and a density of D = 4.
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FIGURE 8.24. Distribution of nodes in clusters after backbone construction w.r.t. net-
work size and a density of D = 7.

paragraph on “Inter-clusterhead distance distribution” definition, Section 8.3.3). We see that both

algorithms achieve approximately the same performance – the gap among them is statistically

insignificant. In particular, we see that the majority (more than 50%) of adjacent CHs in almost
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FIGURE 8.25. Distribution of nodes in clusters after backbone construction w.r.t. net-
work size and a density of D = 10.
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FIGURE 8.26. Distribution of nodes in clusters after backbone construction w.r.t. net-
work size and a density of D = 15.

all network topologies, are 3-hops away. The only exception appears for very small and very

sparse networks (i.e., 100 nodes with degree 4), where this percentage drops to 48%; this is due

to the fact that there are not too many links among the nodes to establish 3-hop distance among

neighboring CHs.
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FIGURE 8.27. Network Diameter diversification (in meters) after backbone construction
w.r.t. network size and its density.
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FIGURE 8.28. Network Diameter diversification (in Hops) after backbone construction
w.r.t. network size and its density.

Robustness evaluation. Next, we evaluated the robustness of the resulting backbone for

various densities of the network. The results are illustrated in Figures 8.30–8.31. In Figure 8.30

we illustrate the number of non-CHs nodes that must be removed to lose backbone connectivity.
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FIGURE 8.29. CH Distance Distribution after backbone construction w.r.t. network size
and its density.

4 7 10 15
0

19
38
57

0
99

198
297

0
170
340
510

0
780

1560
2340

 
 

 

 MIS  DCA  WuLi

 MIS  DCA  WuLi

 MIS  DCA  WuLi

 MIS  DCA  WuLi

Su
bs

tra
tu

m
 N

od
es

 R
em

ov
ed

Degree

 

 
10

0 
N

od
es

50
0 

N
od

es
10

00
 N

od
es

50
00

 N
od

es

FIGURE 8.30. Non-CH nodes (gateways) removed before backbone recalculation w.r.t.
network size and its density.

For WuLi which has no gateway nodes, the plot simply shows the total number of clusters

members. For the other two algorithms, their performance is similar for all topologies, but for the

large networks, where RanMIS exhibit a more robust behavior than DCA, with their performance

gap widening for denser networks (namely 4–7 degree).
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Finally, we examined the backbone robustness of the competing protocols and the results

are illustrated in Figure 8.31 and 8.21. For all but the very dense networks, RanMIS is the

best performing algorithm when the number of backbone nodes removed or the number of

transmitted messages is considered. Though, for very dense networks (density equal to 15),

RanMIS’s performance is inferior to WuLi (and its variation) when considering the number of

backbone nodes allowed to be removed. When examining the number of transmitted messages,

RanMIS loses only, as expected, by WuLi’s variation whose goal (as mentioned before) is to violate

WuLi principle of CHs selection in order to keep the message overhead as low as possible.
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FIGURE 8.31. CH nodes removed before backbone recalculation w.r.t. network size and
its density.

Overall comparison of the protocols. Here we briefly summarize the most significant conclu-

sions from the experiments. The value of parameter D controls a tradeoff between the number

of rounds needed to complete RanMIS and transmitted messages; a value equal to 24 seems to

achieve a good balance. The value of parameter M does have an impact on the number of rounds,

and it seems that a value equal to 8 should be the preferred choice. None of these parameters has

an impact on the number of cluster produced. Concerning RanMIS’s comparison with the rest

of the protocols, we found that RanMIS is the worst when the number of rounds is considered,

but the best from the perspective of transmitted messages; its number of rounds and messages

increases for larger networks, and drops for denser networks. RanMIS has a graceful distribution

for the distribution of cluster cardinality, and for the inter-cluster distance, but it produces

relatively “long” backbones. Finally, RanMIS is quite robust when backbone nodes die being the

most resilient protocol for sparse networks, but not the best one for very dense networks, staying

behind WuLi?.
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8.4. CONCLUSION

RanMIS incorporates some pros that are beneficial to ad hoc networks. A RanMIS network

topology would encompass considerable availability, because it is efficient in the message complex-

ity that involves backbone construction and maintenance (see Figures 8.20, 8.21). Additionally,

it is sustainable, in the sense that it can continue operating for an extended amount of time,

compared to its competitors, because of its resilience in node failures (see Figure 8.31). The ‘intra-

cluster redundancy’, as it is described by the network cluster cardinality (Figures 8.23–8.26), is a

very useful network attribute, because it allows for adopting a round-robin CH selection method,

so as to put some nodes in a sleep mode and thus increase network longevity.

8.4 Conclusion

Ad hoc network node clustering is a very practical and useful topology management approach to

reduce the communication overhead and exploit data aggregation in wireless ad hoc networks.

Despite the very large literature on the subject, still there is room for the development of protocols

that will achieve to run in very few rounds (and thus incur small delay) and at the same time

transmit very few messages (thus addressing the broadcast storm problem). In this chapter,

we investigated by detailed simulation the performance of RanMIS using a new exhaustive

evaluation framework. The results confirmed the message-optimality of RanMIS, and exhibited

its drawback when the number of rounds is concerned based on the original suggestions. Overall,

we strongly believe that RanMIS could be a viable clustering option for wireless ad hoc networks.

The properties of a network topology constructed by RanMIS can be used by applications

such as habitat monitoring [96], by disaster relief [20] or law enforcement operations manage-

ment [30], or even military applications, such as the battle field communications, the early

warning, the security surveillance, the identification, the shooter position estimation [128], the

battlefield situational awareness [59], the battle damage assessment, the targeting [63], the

nuclear-biological-chemical hazard awareness [53], where quasi stationary nodes are involved.

149





C
H

A
P

T
E

R

9
CONCLUSIONS AND FUTURE WORK

In the context of the present dissertation we considered the problem of backbone formation
for modern military multilayer ad hoc networks with the purpose to better monitor and /
or manage those and improve their performance in terms of their latency, their scalability

and their lifetime. We employed tools from graph theory and network science with aim to study
network topology and uncover those node characteristics that play crucial role in information flow
within the network. We employ a wide range of different multilayer network structures, including
vehicular ad hoc networks. Across all the development phases of our work, a common research
approach has been followed. Particularly, all the proposed mechanisms where evaluated in widely
adopted simulation environments in order to be consistent with the research community, be
reproducible and thus provide solid proof of our findings.

In order to improve the performance of military multilayer ad hoc networks we investigated
the possibility of forming the backbone in terms of connected node dominating sets, and subse-
quently we defined – for the first time in the literature – the problem of minimum connected node
dominating set for multilayer networks. We proved that decomposition-based and aggregation-
based approaches for DS calculation in multilayer networks won’t work and highlighted the
significance of assessing and exploiting each node’s intra- and inter-layer links in order to be
considered as candidate members of DS. Thus, we strived for an improved topology management
of a military multilayer network by constructing robust CDSs under the concept of influential
spreaders.

Our work so far proved that prominence of network nodes cannot be “predicted” by merely
measuring the number of connections (degree) incident upon the focal node. Thus, we generalize
the well established PCI centrality in the domain of multilayer networks by introducing a
number of novel approaches that quantify the importance of a multilayer node. Likewise, the
proposed methodology is based on local knowledge of network (and layer) connectivity, that is, at
most two hop neighbor related information. We acknowledge that, extending local knowledge of
network connectivity beyond two hop neighborhood can provide better awareness to nodes about
their “strategic” position in the multilayer ad hoc network, on the other hand, though, it can
be prohibited in such a dynamic environment as this can be both compute and communication
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intensive. We developed distributed algorithms that based on the proposed centrality metrics
outperformed other state-of-the-art competitors regarding various performance measures.

Regarding the computation of a resilient network overlay for communication link monitoring
in multilayer ad hoc networks we recognize that it is a hard to address problem, especially using
distributed algorithms, because of coordination failures which can lead to loss of communication or
over-dependence on a specific layer. We prove that a node to be able to exert sufficient knowledge
regarding the multilayer network traffic data, must be well connected to as many layers as
possible and interpret this attribute in the proposed schema for identifying influential spreaders
in these complex systems.

Motivated by applications in traffic monitoring in diverse communication systems, we con-
sidered distributed methods of creating a minimum-size overlay network of monitoring devices
over a wireless multilayer ad hoc network. We emphasized the overlay network’s resilience to
correlated layer failures, paying special attention to inter-layer links, and formalized the problem
in terms of Multi-Colored edge dominating sets (EDS) in multilayer networks (MCMCEDS).
We proved that the problem of finding the MCEDS in a multilayer network is NP-hard. In order
to solve it we propose a centrality measure-based technique that provides to nodes awareness
about the significance of the edges that are adjacent to them. We propose distributed algorithms
that heuristically calculate the MCMCEDS and assess their performance regarding various
performance measures.

Focusing on the vehicular ad hoc networking paradigm (V ANETs) we considered the problem
of accurate prediction of vehicular trajectories which is an essential mechanism for ITS. We
proved that by maintaining global dictionaries along with individual vehicle profile decoded from
updates, it will be possible to predict group behavior. This can lead to better traffic management,
and more efficient bandwidth management and quality of service (QoS) in p2p applications. We
propose a new trajectory prediction scheme which builds in a purely distributed fashion a rich
summary of a vehicle’s roaming history that subsequently is used to provide accurate predictions.
In the context of military multilayer ad hoc networks trajectory forecasting of mobile nodes that
make use of VANETs technology can improve information flow within the network. To elaborate,
the respective vehicles present an attractive and viable option so as to be selected as relay nodes
from the associated multilayer network routing algorithms.

Emerging advances in network technology are helping to break down the barriers to telecom-
munications interoperability that have long stymied military planners. Nowadays, nodes are
able to integrating multiple waveforms and thus enable interoperability with legacy users and
communications with entities using other standards. This evolution predisposes an increased
complexity for military multilayer ad hoc networks; growth in colossal sized structures with
numerous connections that require advanced handling and analysis; opportunistic connections of
mobile nodes that play a fundamental role in dynamical processes, etc. All these considerations
confess that establishing, monitoring / maintaining and improving connectivity in future military
multilayer ad hoc networks still holds a vast domain of yet undiscovered tasks and thus tradi-
tional network theory needs to appropriately adapt and evolve in order to embrace the newly and
yet undiscovered needs of these networks.

To this end the analysis of military multilayer ad hoc networks and dynamical processes
on these structures will be a core part of our future directions. Understanding the peculiarities
of each networked system and further combine those attributes in this multi-structure poses
significant challenges. Among the different open problems to be solved, we highlight the following:
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(i) The need of setting up novel centrality measures that could possibly better highlight node
importance so as to better understand the topology of these unique networks.

(ii) Gathering a solid knowledge and understanding on the interactions between military en-
tities (nodes) that pursue a common operational objective and bind each respective layer
separately, as a single network, and how these interactions are adapted and correlated on
the whole multilayer structure.

(iii) Establishing approximability results for the MCMCEDS problem.

(iv) The need to control the growth of the respective data structures associated with the trajectory
forecasting mechanism in VANETs so as to seamlessly integrate these in the multilayer
network environment.

(v) The need to investigate integrating Delay Tolerant Networking (DTN) paradigm as a candi-
date technology to improve connectivity in the multilayer network environment.

These consideration are only the start line of otherwise endless research directions towards
understanding our ever evolving network structures and their applications in our everyday lives.
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