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Abstract— Wireless data broadcast received a lot of attention
from industries and academia in recent years. In any form
of a push-based broadcast, access latency and tuning time are
vital issues, and in order to address the tradeoff among these
competing goals, the broadcasting of indices along with the data
is the most viable solution. Currently, two broad indexing families
exist: those that exploit some form of a tree structure, and
those that are based on some ‘distributed access on the air’
mechanism. The latter family is the most popular and viable,
because it allows for following ‘air-pointers’ without the need to
first find a tree root. The champion method of the distributed air
index is the Exponential index which however is not appropriate
when the access pattern is skewed, i.e., some data items are
more popular than the others. To address this shortcoming,
we design a Distributed Skip Air Index (DiSAIn), which exploits
access statistics in order to improve average tuning time, while
it preserves the access latency equal to that of the original
Exponential index. To attest the superiority of the proposed
indexing method, we perform a detailed simulation evaluation
of the two competing methods.

I. INTRODUCTION

A wealth of wireless networks is nowadays present such as
cellular, WiMAX, vehicle-to-infrastructure, and so on. In all
these types of communication systems, broadcasting is the fun-
damental operation that exploits the shared medium, i.e., the
wireless channel, to transmit information to clients. The com-
munication protocols in such architectures can be implemented
either as pure pull-based, pure push-based [20] or on-demand
broadcasting [1], [26]. In pure pull-based broadcast, the clients
request information via an uplink channel, and subsequently
the server allocates a channel for the requesting client, and
transmits the information. In pure push-based broadcast, the
server sends information over a common broadcast channel to
all listening ‘consumers’ (clients). In on-demand broadcast, the
clients pose requests to the server, and the server broadcasts
the responses via a shared broadcast channel – thus a single
response can satisfy multiple requests. Apparently, (pure-push
and on-demand) broadcasting is a preferred choice for modern
wireless networks, since it overcomes the scalability issues
associated with the large number of consumers and the large
volume of transmitted data.

Consider for instance a data dissemination [7] application
in an Infrastructure-to-Vehicle (I2V) case. In this push-based

Research supported by the project “REDUCTION: Reducing Environ-
mental Footprint based on Multi-Modal Fleet management System for Eco-
Routing and Driver Behaviour Adaptation”, funded by the EU.ICT program,
Challenge ICT-2011.7.

broadcast system, the RSUs broadcast information concerning
issues relevant to the moving vehicles, e.g., traffic congestion
reports, updated routing instructions for the vehicles of a fleet,
and so on. Each RSU constructs a broadcast program with
the needed info and broadcasts it periodically. All vehicles
can tune in to the broadcast channel in order to retrieve
the information (data items) without sending explicit requests
for them, thus avoid ’choking’ the uplink channel. Figure 1
illustrates such a scenario. A vehicle wants to retrieve data
item B from a broadcast channel. The importance of knowing
when item B will be broadcasted is crucial, because the vehicle
can decide to accelerate to get it from the next RSU, or slow
down to get it from the current RSU. The presence of air
indexes would give an answer about the time of broadcast.
Regulation of the vehicle’s velocity and knowledge of the
distance between successive RSUs could provide a suggestion
to the driver about its driving policy.

Fig. 1. I2V type of communication.

Such information is important in an overall CO2 emission
control policy. The more accurate the information about the
place of the desired data in the overall broadcast cycle is, the
less alteration (acceleration or slow down) in the velocity of
the vehicle is required in order to be in range of an RSU for the
whole time period the desired data is broadcasted. Optimizing
driving behavior patterns, such as idling, speeding, fast stops
and hard braking, have a direct impact on fuel economy
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and CO2 emissions which is a great challenge1 that the
transportation section faces today. Besides, such information
is also useful for hybrid geocast routing protocols [2], for use
by dead drops [5] and so on.

In most situations the majority of the vehicles that move in
a specified area tend to retrieve some particular data instead of
showing equal preference to all data; therefore the skewness
in data access is very high [15]. An index that help the
listener find faster this information would definitely improve
the driving behavior patterns.

To overcome that problem of ‘blindly’ searching among
all transmitted data, the servers usually interleave along with
the data, and some index packets, to help the consumers
‘move’ into the broadcasted information. The index packets
contain the necessary information to guide the user through
the transmitted data, until s/he reaches the information. These
index packets play the role of the indices that we encounter
into the traditional disk-based database systems. The differ-
ence between the two is that the broadcast channel is a one-
dimensional medium, and the interleaving of index packets
increases the access time, in an attempt to decrease the
tuning time. These performance measures are typically used
to measure the efficiency of a wireless data broadcast system;
access time is the time elapsed from the moment a request is
issued by a client to the moment the requested data is returned,
and tuning time is the duration of time a client stays tuned in
to collect requested data items. All indexing schemes attempt
to achieve the best tradeoff between tuning time and access
time.

A. Motivation

A lot of indexing schemes have been proposed in the
literature (cf. Section V for a detailed survey); they can be
categorized as hierarchical tree-based and distributed solu-
tions. Examples of the first family include an adaptation of the
idea of B+-tree indexing in wireless environments [11], and
application of signature trees as indexing methods [14]. B+-
trees and hashing are appropriate for uniform access patterns.
To deal with skew access patterns, other tree-based methods
include [13], [19]. Adaptation of such indexing schemes (e.g.,
B+-tree) to work in multiple broadcast channels are described
in [8], [25].

Distributed solutions such as the adaptation of the traditional
hash-based indexing technique in wireless environments was
earlier described in [10], and later was generalized in [21],
[22], which can be seen as a distributed air-based imple-
mentation of a skip list. Hybrids between the two families
are described in [18], [24]. In summary, any method that
is (completely or partially) based on a broadcasted tree is
inferior, compared to the distributed solutions, because the
users can not start their search immediately after they tune
into the broadcast channel.

In [21], Xu et al. proposed the exponential index, ExpIn . In
ExpIn , each bucket contains a data part and an index table.

1http://www.reduction-project.eu/

The index table consists of a number of rows which varies
according to the database size. Each entry indexes a segment of
buckets with sizes that grow exponentially (i.e., 20, 21, 22, · · ·).
The first entry contains the next bucket (20 = 1) and for each
i > 1 the ith entry points to the segment of buckets that are
2i−1 to 2i away (see Figure 2). Instead of the base 2, the
algorithms can use any integer number, but this achieves an
acceptable tradeoff between access time and tuning time. For
more details, the interested reader can resort to [22].
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Fig. 2. Exponential index structure for a sample database consisting of the
elements ‘A’–‘H’.

In [21], [22] it was shown that the exponential index
(ExpIn) is superior to the hashing schemes of [10] (and to
the tree-based schemes), and currently this indexing scheme
is the state-of-the-art for broadcast indexing. However, the
exponential index is able to achieve good tuning time only
when the broadcasted data have equal probability of access. In
real life applications though, some items are more frequently
accessed by clients than some others (the less popular ones);
i.e. a skewed access pattern [4] is prevalent in the real life. This
feature makes ExpIn’s performance degrades proportionally
to the skewness of data, and it comprises a motivation of the
present work.

In this article, we develop an indexing scheme for a single
broadcast channel, suitable for skewed access patterns that is
distributed in its nature, i.e., no matters when a user tunes
into the broadcast channel, s/he can immediately start the
searching for the desired item. Specifically, the article makes
the following contributions:

• It develops a broadcast index, namely the Distributed Skip
Air Index (DiSAIn), which exploits the different access
probabilities of data items, in order to improve the mean
tuning time, while retaining the same access time as that
of the exponential indexing scheme.

• It evaluates experimentally the performance of the pro-
posed broadcast index, against the Exponential Index, for
several database sizes and access probabilities distribu-
tions.

The rest of this article is organized as follows: Section II
describes the network model, i.e., any assumptions made in
the present work; Section III presents the Distributed Skip Air
Index; Section IV presents the simulation environment, the
experiments and obtained results. Finally, Section V briefly
survey the most relevant work, and Section VI concludes the
article.

II. NETWORK MODEL

We will abstract our application area with the generic model
which is depicted in Figure 3. We will use the term ‘client’
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to any device, e.g., vehicle, smart phone, that is interested to
get information from the broadcast channel.

Fig. 3. Generic architecture of broadcast-based wireless networks.

We will consider a single channel wireless broadcast envi-
ronment with the following generic properties:

• The broadcast schedule is push-based.
• Data access patterns are skewed.
• All data items are of equal size.
• Time on the broadcast channel is divided into slots where

each slot can accommodate one data item.
• The server broadcasts data items in the range of 1 to

database size.
• The server retains access statistics.
• Clients require only one item at one time, i.e. a single-

item query.
• The client after acquiring the desired data, remains idle

for an exponentially distributed time period before next
data request.

• Initiation phase takes place every N broadcast cycles
in order to stay updated to variations to data access
probability distribution.

III. THE DISTRIBUTED SKIP AIR INDEX (DiSAIn )

The objective of the DiSAIn index is to address the problem
of skewed access probabilities observed in real life applica-
tions and the appropriate data dissemination in VANETs. To
achieve this, it adds more ‘pointers’ to the original ExpIn
index, but it retains some of the properties of the ExpIn index:
each bucket of the broadcast cycle contains a data bucket and
an index table. The index table consists of i entries. Each
entry indexes a range of buckets that are 2 i−1 to 2i−1 buckets
away and holds the maxkey value of these buckets. But for the
last bucket, the DiSAIn maintains another index, the skewed
index SI , that points to the most popular element MP of the
segment. The construction of the index table takes place in an
initiation phase where the distance of MP from the maxkey
value of the last segment is calculated for each data element.
In case where all data elements of the last segment have equal
access probabilities, then the DiSAIn indexes one of these
elements at random.

Figure 4 illustrates a sample DiSAIn index; it is supposed
that the elements ‘A’ to ‘H’ are to be indexed, and that the
element ‘F’ is the most popular one. In general, one fourth of
the total number of pointers point to this ‘hot’ element. If the
client tunes into the broadcast channel just before item ‘A’,
then it retrieves the index table that corresponds to the bucket
of ‘A’. In case where the client issues a query for item ‘F’, a
pointer points to it directly, minimizing the tuning time while
keeping the access latency constant.

The effectiveness and efficiency of the DiSAIn index is not
only based on the direct indexing of the most popular item(s),
which creates huge earnings, since in real environments most
of the clients retrieve hot items. Even in cases where clients
are not interested in the popular ones, this additional pointer
shortens the tuning time, since it provides evidence about the
relative position of other items. For instance, looking at the
index that corresponds to element ‘A’, the client can deduce
that between elements ‘F’ (five places away) and element ‘H’
(seven places away) there is one element in-between them,
therefore this is the element ‘G’.
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Fig. 4. A small example of the DiSAIn indexing strategy.

In the previous discussion, we described the DiSAIn index
as a plain addition of one pointer to the ExpIn index. Actually,
the real flesh of the index, is the addition of more pointers
towards the rest of the popular items. Clearly, there is a
tradeoff and an optimal value of added pointers. We refer to
this version of the index as the Enhanced DiSAIn . In this
paper, for the interest of space, we do not examine further
this generalized version, but stick to the most simple one,
since even this naive approach is able to reap significant
performance gains, as this is presented in the next section.
The theoretical and experimental analysis of the generalized
version will be done elsewhere.

IV. EVALUATION

For the evaluation of the proposed indexing scheme against
the state-of-the-art broadcast indexing method, i.e., ExpIn , we
developed a simulation model where several clients (50) access
the data served by a server through a broadcast channel. The
dataset size varies from 256 to 2048 items. We assume that
the server has prior knowledge of access profiles or it employs
statistical methods to estimate access statistics [17].

A. Simulation setup

For the evaluation of the method we developed a system
where a node (client) requests data according to a probability
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distribution. Flat broadcast is employed to broadcast the data
items. The data are served by a server through a broadcast
channel. After the client acquires the desired data it waits for
an exponential distributed time interval with mean time T
before it generates another request. Thus, it is a blocking
client. For every system configuration, we run 50 experiments
of 5000 queries with different popular items, and we com-
pute the average access latency and average tuning time for
every experiment. We implemented a Zipfian model for item
popularity distribution with parameter θ:

px =
(1/x)θ

∑n
x=1(1/x)θ

1 ≤ x ≤ n (1)

where θ controls the skewness of the access distribution for
n items. For θ = 0 the Zipfian reduces to the uniform
distribution, whereas larger values of θ derive increasingly
skewer distributions. Using this formula, we can derive relative
popularities for items. As performance measures, we used the
tuning time and access latency. It has to be noticed here, that
time is measured according to the internal simulator clock
and does not correspond to actual seconds; it only the relative
timing performance of the contestants that counts and not the
absolute time difference (for instance, in Figure 6 we see that
the actual difference in tuning time on the leftmost plot is
5.25−4.35 = 0.8, but the relative percentage is 0.9

5.2% = 17%).

B. Energy consumption model

We assume two states of energy consumption: doze mode
and active mode. Es describes the amount of energy con-
sumption in an energy state s per unit time. The average
energy consumption can be measured by the amount of unit
energy in a given time. It simulates the amount of time that
a client remains tuned into the broadcast channel. The result
of a query processing contains unnecessary active mode time
units, because the client has to follow more pointers in order
to retrieve the desired data. Note that the frequent alternation
between the active and the doze by turning “on” and “off”
electronic circuitry may incur additional energy consumption.
However, as circuit designers become more concerned about
reducing energy consumption, switching energy will become
less dominant and in our experiments we don’t take it into
account. The energy consumption in doze mode is about 1000
times less than that in active mode [3]. In order to evaluate
energy consumption we set:

Eactive = 1000 and Edoze = 1 energy unit.

C. Experimental results

Impact of the number of pointers.
The main idea of the Distributed Skip Air Index as described
in section III is to add an extra pointer in the most popular item
of the last bucket. This simple feature leads to a significant
improvement in mean tuning time in cases where the distri-
bution of data queries is somewhat skewed. We sketch here
the impact of the addition of more pointers, and specifically
the addition of one more pointing to the second most popular
item of the last bucket. The results in Figure 5 attest that

indeed there are gains. The same conclusion is easily reached
in cases where a second pointer is added which points to the
most popular item of the se− 1 bucket, and so on. In the rest
of the article, we do not evaluate this version of the index
further, but deal with the simpler DiSAIn index.
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Fig. 5. Mean tuning time for DiSAIn (n = 256, θ = 1.0).

Impact of skewness in the access pattern.
In Figure 6 we observe the impact of skewness on the tuning
time of the competing algorithms. Consistently with the theory,
when the access pattern is uniform (leftmost plot), the ExpIn
index performs as good as the DiSAIn. But, as the θ increases
the performance gap between the two methods widens, and
the DiSAIn index is the improving its behavior in contrast
to ExpIn . These observations are consistent across various
numbers of items.
Performance w.r.t. the mean access time.
We evaluated the performance of the methods with respect
to the access time (see Figure 7). We observed that DiSAIn
has no significant negative effect in mean access time. The
addition of extra pointer(s) in the indexing scheme increases
the size of each item leading to a total increase in mean access
time. In case of one extra index to the most popular item of the
last bucket, the increase in the size of each bucket is estimated
according to:

s′ =
sne

so + se
, (2)

where so is the size of a data item, se the size of the original
exponential index and sne is the size of the extra index. In
a typical system of 1024 data items with so = 128 bytes
and se = 4 bytes the extra index is approximately 0.4 bytes
leading to a total increase of each bucket and of average access
latency of 0.3%, which is really negligible. Similar results
were obtained for various values of n and θ.
Performance w.r.t. the database size.
The database size plays a significant role in the performance
of the exponential index. As the number of items increase, the
effect that skewed data have in system performance increases
also. From Figure 8, we observe that when the number of
broadcasted items gets really large, then the performance gap
in tuning time between the two competing indexing schemes
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Fig. 6. Impact of skewness on mean tuning time (database size 256, 512, 1024).
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broadens. This is expected since the ExpIn index needs to
follow more pointers in order to retrieve the desired data.
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Performance w.r.t. energy consumption.
We evaluated the performance of the methods with respect
to the energy consumption. We computed access latency and
mean tuning time (Table I).

Eactive = 1000 and Edoze = 1 energy unit.

From Table I we can compute active and doze time units
and energy consumption (Table II). Active time units equal
mean tuning time while doze time units are computed using
the equation :

θ Access latency Tuning time
Expo DiSAIn Expo DiSAIn

0.0 255.35 255.35 5.48 5.48
0.8 255.14 256 5.5 5.37
1.0 256 257 5.5 5.23
1.4 271 268 5.78 4.9

TABLE I

ACCESS - TUNING TIME (n = 512, θ = 0.0, 0.8, 1.0, 1.4).

|Ndoze| = |accesstime| − |tuningtime| (3)

theta Doze Active Energy
Expo DiSAIn Expo DiSAIn Expo DiSAIn

0.0 249.87 249.87 5.48 5.48 5729.87 5729.87
0.8 249.64 250.63 5.5 5.37 5749.64 5620.63
1.0 250.5 251.77 5.5 5.23 5750.5 5481.77
1.4 265.22 263.1 5.78 4.9 6045.22 5163.1

TABLE II

ACTIVE-DOZE TIME UNIT, ENERGY CONSUMPTION (n = 512).

It is obvious that DiSAIn is more efficient in terms of
energy consumption for all experiments conducted. As the
skewness of data increase ExpIn becomes energy inefficient
while on the other hand DiSAIn consumes less and less
energy making it the ideal choice for such environments.

V. RELEVANT WORK

Disk-based indexing (e.g., B+-trees, Hashing, Skip Lists)
for traditional as well as for advanced applications is a thor-
oughly investigated area during the past years. An adaptation
of the idea of B+-tree indexing in wireless environments was
first described in [11], where instead of the disk addresses the
leaves of the B+-tree store the arrival time of each datum in the
broadcast channel. Similarly, an adaptation of the traditional
hash-based indexing technique in wireless environments was
earlier described in [10], and later was generalized in [22].
Hybrids between the two approaches are described in [18],
[24] and application of signature trees as indexing methods in
reported in [14], which of course can support only equality
queries. Adaptation of such indexing schemes (e.g., B+-tree)
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to work in multiple broadcast channels are described in [8],
[25]. They do not propose new schemes but simply different
allocation methods for the nodes of the indexing tree. In all
these works it is assumed that: a) there is a global ordering
among the transmitted data, and b) the access pattern is
uniform, that is, the access probability is the same for all data,
which is quite unrealistic.

Deviating from the uniform access probability assumption,
several works considered the effect of access skew on the
design of indexing schemes. A new scheme is proposed
in [19], which is a k-ary version of the basic binary Alphabetic
Tree [9] over the data, whereas [23], [25] adapted the indexing
method of [11] to deal with non-uniformity in access. Various
methods were based on the construction of a binary or k-
ary Alphabetic Tree to develop indexing schemes for multiple
broadcast channels [12], [16], [28]. These methods do not
provide new types of tree-structured indices, but rather a new
allocation method for the tree-structured method of Alphabetic
trees to the multiple channels. All these works [12], [16], [19],
[23], [25] assume that: a) there is a global ordering among the
transmitted data. There are only a couple of works [6], [13],
which deviated from both the uniformity and global ordering
assumptions. Finally, remotely related to the present work are
the broadcast indexing techniques, e.g., for multidimensional
data [27].

VI. CONCLUSIONS

This paper investigated the issue of indexing broadcast in-
formation under skewed access patterns. Even though there are
a lot of broadcast indexing schemes in the relevant literature,
our approach fills the gap by proposing a distributed index
which has no root, and therefore the clients can start searching
for information without waiting for a ‘designated root’. The
main idea of the proposed Distributed Skip Air Index is to
add some pointers to the most popular items so that the
clients can locate them quickly. We implemented a simulation
environment to investigate the performance of the proposed
scheme and presented detailed experiments that assess the
superiority of the method, clearly outperforming the state-of-
the-art distributed broadcast index.
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