Enabling ITS Real World Experimentation in NITOS Future Internet facility

Nikos Makris, Thanasis Korakis, Dimitrios Katsaros and Leandros Tassiulas University of Thessaly - Greece

Overview

- Introduction Background Knowledge
- Motivation
- Implementation
- Evaluation
- Future Work

Background Material

• The ITS protocol stack:

Background Material

- ETSI TS 102 436-4-1 : Intelligent Transport Systems (ITS); Vehicular communications; GeoNetworking; Part 4: Geographical addressing and forwarding for point-to-point and point-to-multipoint communications; Sub-part 1: Media-Independent Functionality
- Location Information included in every packet sent out of the ITS station.
- Different types of messages: Beacons, Single Hop Broadcast, Topologically Scoped Broadcast, GeoBroadcast/GeoAnycast, GeoUnicast, Location Service

What type of Location Information?

- Using Long Position Vectors, included in every packet.
- If the ITS station is a relay, it adds it's own LPV.
- Contains geographical information of each ITS STA.

Background Material

- GeoNetworking Interoperability: Using an IPv6 adaptation sublayer
- Usually employed when data needs to be transmitted to the Internet
- The ITS Station offloads them to the Road Side Unit (RSU) which takes care for removing the GeoNetworking headers.

Overview

- Introduction Background Knowledge
- Motivation
- Implementation
- Evaluation
- Future Work

Motivation

- IVC research is mainly conducted using simulations
- When involving the wireless medium, simulations seem to be inaccurate compared to evaluation under real world settings.
- Simulation parameters reported across 61 Mobile Ad-Hoc Network (MANET) papers

Stuart Kurkowski, Tracy Camp, and Michael Colagrosso. 2005. MANET simulation studies: the incredibles. *SIGMOBILE Mob. Comput. Commun. Rev.* 9, 4 (October 2005), 50-61.

Motivation

- Therefore, the need for wireless testbeds is obvious.
- Currently, no testbed is able to offer experimentation with the ITS stack!
- Several other implementations exist, but they lack in providing the whole stack rather than single components (eg. CarGeo6).

Implementation

- Introduction Background Knowledge
- Motivation
- Implementation
- Evaluation
- Future Work

Components used

Facility Layer

- Used to generate traffic over our platform
- Supports encapsulation of packets in Cooperative Awareness Messages (CAM) or Decentralized Environmental Notification Messages (DENM) (ETSI TS 102 637-3: "Intelligent Transport Systems (ITS);

Vehicular communications; Basic Set of Applications; Part 2 & 3)

- The selection of the Facilities layer protocol is triggering a different transport protocol.
- Facility layer is running as a separate application that the GeoNetworking Core.

GeoNetworking Core

- Running as a multithreaded daemon.
- Implemented full GeoNetworking functionality.
- Integrated the ETSI TS 102 636-5-1 standard, used for implementing the Basic Transport Protocol (BTP).
- What about Geographical areas?

GeoNetworking Core

- ETSI EN 302 931
- Defining 3 different types of areas, using 3 variables.

Link Layer

- Using the Microtic R52 card, able to transmit in the 5.9GHz band
- Compatible with the ath5k
 Open Source driver which supports injection of packets.
- Pcap library used to directly inject packets on the driver.

Mobility Emulation

- Usually a testbed's nodes are static.
- Using gpsd and gpsfake we enable mobility at the GeoNetworking layer of the node.
- gpsfake is used to parse NMEA sentences from a text file and then directly feed them to gpsd.
- gpsd can be queried at any time by any other application about a node's position, returning it in a JSON format.
- Management Layer: Separate application used for updating the position of the GeoNetworking Station.
- Queries gpsd, and sends the appropriate Position Update Messages to the Geonetworking Core.

Implementation

- Introduction Background Knowledge
- Motivation
- Implementation
- Evaluation
- Future Work

Evaluation of the Platform

- The evaluation took place in the NITOS Future Internet facility.
- Started in 2008 and has been supported by several EU funded programmes.
- Currently: 50 outdoor nodes using heterogeneous wireless technologies (WiFi, WiMAX, LTE), SDR and SDN.
- We conduct our experiments using a subset of the nodes and WiFi or Ethernet technology.
- We evaluate our platform against the CarGeo6 Open Source implementation.

3-Hop Delay Measurement

- We measure the 3-hop delay by generating CAM packets encapsulated in TSB messages.
- Compare it to traditional IP routing.
- Used the dummynet application to filter the incoming requests per MAC address.
- ~60% performance degradation when using the GeoNetworking implementation.

Red dots represent Grid Nodes
Yellow dots represent Orbit Nodes
Green dots represent USRP Nodes
Orange dots represent Diskless Nodes

Comparison with CarGeo6 (1/2)

- As CarGeo6 only provides the GeoNetworking Core, we had to alter it in order to communicate with our facility layer.
- We measure one hop delay over the Ethernet link for cases of variable traffic conditions.

Comparison with CarGeo6 (2/2)

• Delay measurement for traffic generated at different rates

Future Work - Conclusions

- Change the access mechanism over the network
- Implement the IPv6 Adaptation Sublayer that will enable using GeoNetworking with existing applications.
- Cross Layer Optimizations with the Open Source driver that runs at the MAC layer.

Thank you!

