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Abstract—Next-location prediction in a VANET system, where
each vehicle acts as a network node, is of great importance
in intelligent transport systems (ITS) as this property could
have a direct and positive effect on network connectivity, traffic
management and hence, improve overall ITS safety. In the last
few years, the widespread use of GPS navigation systems and
wireless communication technology-enabled vehicles has resulted
in huge volumes of trajectory data. The task of utilizing this
data employing pattern-matching techniques for next-location
prediction in an efficient and accurate manner is an ongo-
ing research problem. This paper presents the Rich-Dictionary
Markov Predictor (RDM), a protocol for producing online these
forecasts by using a pattern matching technique. RDM is fast,
accurate and fully parameterized presenting different trade-offs
as regards efficiency versus prediction accuracy. We evaluated
the effectiveness of RDM via simulation and the results attest
that it achieves on the average more than 35% better prediction
accuracy and competitive to faster prediction times than other
model independent and highly accurate prediction algorithms.

I. INTRODUCTION

Vehicular ad hoc networks (VANETSs), are spontaneous,
flexible wireless networks that are able to support the associ-
ated applications in dynamic, multi-hop topologies. However,
the relatively high speed of the moving vehicles degrades
link quality, causes fast fading, short connectivity and high
frequency hand-offs. In general, such mobility related prob-
lems are addressed by appropriate broadcasting techniques,
by smart routing, by clustering protocols [4]. Nevertheless,
as Kolios et al. explain in [12], if mechanical relaying; i.e.,
“store-and-carry” is allowed for the vehicles, then "a plethora
of different, novel resource-utilization schemes can be explored
to increase network performance”. Evidently, one of the key
components for achieving relaying is the ability to predict
vehicles trajectories accurately.

It has been observed [17] that in practice, weekdays and
weekends usually exhibit significantly different traffic condi-
tions, whilst at the same time having similar congested and
congestion free traffic patterns. Based on that observation it is
straightforward to conclude that every vehicle does not follow
the same path every time they leave their base, e.g., house.
These different moving patterns relate to time of day such as
driving to work in the morning and hobbies in the evening
and also the entry point in the road network, which probably
means a different final location. In such a realistic situation,
where the actual path of each vehicle is not known in advance
and most of the vehicles enter some areas of the city, e.g., city
centre, on the same time period, the existence of a fast and
accurate prediction mechanism is beneficial to:

Routing protocols; i.e., the selection of the next hop
is a necessary ingredient of store-carry-forward algo-
rithms [11], and also for geocasting protocols [9].
Traffic management: traffic management applications fo-
cus on improving the vehicle traffic flow and traffic as-
sistance. Possible converging vehicle paths might provide
drivers useful information so that they can make the
best decisions in terms of their route, such as avoiding
congested areas.

Connectivity robustness: user applications which provide
value added services like the Internet, and p2p appli-
cations, would exploit proposed (predicted) paths that
would guarantee an acceptable Quality of Service (QoS)
for these applications.

Safety: drivers are proactively informed about possible
conflicting paths between neighboring /approaching cars.

In this article, we propose a new next-location prediction
scheme, namely the Rich Dictionary Markov (RDM) predictor.
The article makes the following contributions:

It exploits the resource-rich environment (battery, com-
puting power and storage) of a vehicle to build a rich
summary of its roaming history that subsequently is used
to provide more accurate predictions.

It uses data structures that are constructed in a purely
distributed fashion.

It develops a new forecasting model that is a combination
of two prediction mechanisms.

The proposed algorithm is fully parameterized, presenting
different trade-offs in efficiency vs. prediction accuracy.
It provides a comparison of the proposed method against
several, model independent and highly accurate predic-
tion algorithms, and the results show that RDM achieves
on the average:

— More that 35% better prediction accuracy than the
second best-performing algorithm.

— Competitive to faster prediction times than its com-
petitors.

The rest of this article is organized as follows: First, we
provide the technical insight of the prediction algorithms and
explain how the route prediction problem can be modelled
as a discrete symbol prediction problem (§ II). Then, we
briefly survey related works (§ III), we unveil the unique
characteristics of RDM (§ IV), we present its prediction
mechanism (§ V) and evaluate its performance (§ VI). Finally,
we conclude the article (§ VII).
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II. TECHNICAL INSIGHT OF PREDICTION ALGORITHMS

Consider a sequence of position updates {z1, x2, ...z;}
being generated by a vehicle, represented by the stochastic
process X = {x;}. A predictor will have to predict what
the next position z;y; is going to be on the basis of the
observed history while minimizing the prediction errors over
the course of an entire sequence. Authors in [5] proved the
existence of universal predictors that could optimally predict
the next item in any deterministic sequence and argued that
an optimal predictor must belong to the set of all possible
finite state machines. They also showed that universal FS
predictors achieve the best possible sequential prediction that
any FSM can make and that Markov predictors, a subclass of
FS predictors, perform as well as any finite state machine.
Moreover, they highlighted that a Markov predictor whose
order grows with the number of symbols in the input se-
quence attains optimal predictability faster than a predictor
with a fixed Markov order. Finally, they proved that Markov
predictors based on the LZ78 incremental parsing algorithm
attain optimal predictability because they achieve to changing
the Markov order rapidly enough to reach a high order of
Markov predictability and slowly enough to gather sufficient
information at each order of the model to reflect the model’s
true nature.

A. Markov predictors

To provide the formal definition of the prediction model we
use in our work we follow the work in [10]; a trajectory a; of
a vehicle 7 is a finite sequence of symbols a; drawn from an
alphabet ¥ (where a! € %, V 4, ), with each symbol a] stand-
ing for a road-segmlID. A predictor accumulates sequences of
the type a; = a},a?, ...a;", where n; denotes the number
of symbols constituting a;. Without loss of generality, we can
assume that all the knowledge of the predictor consists of a
single sequence a = a',a?,...a™ . Based on a, the predictor’s
goal is to construct a model that assigns probabilities for any
future outcome given some past. As it is stated in [10], this
formulation implies a stochastic process (X¢):en where at any
given time instance ¢ (meaning that ¢ symbols x4, x¢_1,... 21
have appeared, in reverse order), we need to calculate the
conditional probability :

P[Xt+1 :$t+1|Xt =, X4 :th—17~~-], (1)

where z; € X,V 2441 € 2.

Predictors that use this kind of prediction model are termed
higher-order Markov predictors and the history z;, x¢—1,...
used in the above definition is called the context of the
predictor. These predictors maintain a set of relative frequency
counts for the symbols seen at different contexts in the
sequence, thereby extracting the sequence’s inherent pattern.
They then use these counts to generate a posterior probability
distribution for predicting the next symbol to come.
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B. The vehicle route prediction problem as a discrete symbol
prediction problem

In our work we model the road network as a directed graph
G = (V, E), where the set V represents the road segments and
the set E represents the directed connectivity links between
pairs of road segments. Each segment has its own identification
number, namely, road-segmID (Fig. 1).

Fig. 1. A sample road network and its corresponding graph; the arrows in
the road network and graph depict permitted direction of movement. SegmIDs
are represented by nodes.

The segmentation of a road network into segments is a
process similar in principle to that of designing location areas
for a cellular network [3] [15]. Vehicles are assumed to
perform random walks over this network and is also taken
that each vehicle is aware of the road-segmlID that is moving
on, by the use of technologies such as GPS. These position
updates, not only are they used to build the moving history
of each vehicle but in the form of a discrete symbol sequence
they are shared between communicating vehicles in order to
support their prediction process.

III. RELATED WORK

The backbone of the LZ family of prediction algorithms
is LZ78 [19]. LZ78 performs incremental parsing of an
input string “zi,x9...2;” into c(i) substrings (i.e., phrases)
“wi,ws ... We(;)”, such that Vj > 0, the prefix of the substring
wj (i.e., all but the last character of w;) is equal to some w;
for 1 < i < j. Because of this prefix property, parsed sub-
strings and their relative frequency counts can be maintained
efficiently in a multiway tree structure, namely, a digital tree
or prefix tree (commonly known as trie). An LZ78 parsing of
the string “aaababbbbbaabccddcbaaaa” yields the phrases: “a”,
“aa”, “b”, “ab”, “bb”, “bba”, “abc”, “c”, “d”, “dc”, “ba”, “aaa”.
LZ78 maintains statistics for all contexts seen, for example, the
context “a” occurs five times (at the beginning of the phrases
“a”, “aa”, “ab”, “abc”, “aaa”), the context “bb” is seen two
times (“bb”, “bba”), etc.

LZ78 has three main drawbacks:

o Inany LZ78 parsing of an input string, all the information
crossing phrase boundaries is lost. In our example string,
the fourth symbol “b” and fifth and sixth symbols “ab”
form separate phrases; had they not been split, LZ78
would have found the phrase “bab”, thereby creating a
larger context for prediction.



o Phrases contained within substrings are also lost;
o The prediction performance of LZ78, is not good for short
sequences [5] [10] [18].

LeZi Update (LZU) [2] makes the same parsing of LZ78
algorithm, but instead of adding just the substrings resulting
from this parsing, it adds also all the suffixes of each substring
to the LZU trie. Therefore, phrases within substrings are taken
into account. In our example string the phrase “bc” is added
in the LZU dictionary, which is a suffix of the phrase “abc”.

The algorithm proposed by Gopalratnam [6], namely Active
LeZi (ALZ) is intended to consider the phrases among consec-
utive parsed substrings, thus solving the remaining problem of
LZ78 algorithm and converging faster to optimal predictability.
In order to achieve this, ALZ incorporates a window of
variable length, which is determined on the fly, without any
extra computational overhead, by the longest phrase parsed
by LZ78 algorithm at each step. Once the length of the
window is updated and a new symbol is added to it, all the
suffixes of the window are added to the trie. The detailed
performance evaluation of the major Markov predictors in [10]
highlighted their shortcomings and suggested routes for their
improvement.

Authors in [13] employ the ALZ algorithm to construct
frequency trees of a fixed depth £"*** and perform a Modified
Prediction by Partial Match (MPPM) technique in order to
obtain a prediction performance that outperforms the best
single model predictor. Since the prediction process is online,
MPPM utilizes the true data to adaptively weigh the predic-
tion performance of each different order Markov model. The
weights are updated at every step and the best performing
Markov model is given the highest weight. Thus the problem
of finding the best model order for a given sequence length is
also implicitly solved by applying the above technique.

Trajectory prediction in VANETS has attracted a significant
amount of research recently [16], in order to cope with
increased safety issues that arise from the development of
autonomous driving technologies [1]. Some recent works deal
with lane change prediction [7] [8]; others perform whole
trajectory matching with the aim of predicting far-in-the-future
positions of a mobile [20], [21]. On the other hand, RDM is
a fast, online, next-site prediction model based on analyzing
local movement patterns from the recent past.

IV. THE RICH DICTIONARY MARKOV (RDM) PREDICTOR

The RDM predictor is designed for the VANET envi-
ronment, thus assuming significant energy resources, strong
computing power and large storage capacity, by following
the suggestions in [10]. Therefore, we enriched the RDM’s
dictionary, we expanded its trie and intentionally developed a
more computation-hungry prediction method.

A. Rich dictionary construction

What differentiates RDM from both ALZ and MPPM is that
while they all parse both the input sequence and the phrase
that resides in the sliding window, only RDM attaches all
these phrases to the dictionary as part of the protocol. The
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Algorithm 1: RDM

precondition : An input sequence
postcondition: An updated dictionary of parsed phrases

remarks : dictionary = stores the parsed phrases,
window = a variable length window of
previously seen symbols,
Max_LZ_Length : the length of the
longest parsed phrase, w = a continuously
updated phrase that drives the dictionary
construction.
initialize : dictionary = null; window = null;

Max_LZ_Length = 0,

1 Loop

2 Wait for next symbol v;

3 if w.v in dictionary then

4 | w=wuw;

5 else

6 add w.v in dictionary;

7 update Max_LZ_Length if neccessary;

8 w = null;

9 end

10 add v to window;

1 if length(window) > Max_LZ_Length then

12 | delete window[0];

13 end

14 Update dictionary with all possible prefixes within

window that include v;
15 Forever

net effect of this procedure is that the algorithms develop
completely different dictionaries, tries, sliding window sizes,
which altogether affect the prediction accuracy. Algorithm 1
presents the pseudocode for parsing and processing the input
sequence in RDM.

Proposition 1: When the length of the longest phrase parsed
by ALZ, RDM and MPPM is less than £ MPPM constructs
frequency trees that grow faster.

Proof 1: While ALZ and RDM incorporate a window
of variable length, MPPM uses a window of fixed length
k™e* . This modification on the one hand enables MPPM to
control the growth of its associated trie (max trie depth =
k™) on the other hand allows the phrase that resides in the
sliding window (and drives the associated trie construction)
to continuously increase its length until it is £7*%*. Therefore,
MPPM continuously adds larger phrases in its trie while RDM
and ALZ only when a new phrase is entered in each algorithms
dictionary. —

Fig. 2 illustrates the tries that the competing algorithms
build (£™** = 5 for MPPM) by superimposing them into a
single trie for the input sequence “aaababbbbbaabccddcbaaaa”.
We see that MPPM builds the largest trie, however, this is
temporal and will stop from happening when the length of the
longest phrase parsed by ALZ and RDM becomes greater than
k™% In practice RDM’s resultant dictionary is richer and the
associated trie larger both in span and depth.

Proposition 2: The trie developed by ALZ is strictly con-
tained within that created by RDM.

Proof 2: RDM adds into the dictionary the parsed phrases
of the sliding window and therefore, increases the size of the
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Fig. 2. The trie formed by RDM (Yellow) / LZ78 (Green) / LZU (Blue) /
ALZ(Red) / MPPM (Black) after parsing the symbol sequence “aaababbbb-
baabceddcbaaaa”.

sliding window earlier than ALZ (more precisely it updates
earlier the Max_LZ_Length parameter). This larger window,
whilst incorporates at any time ALZ’s equivalent window,
produces more (trie span expansion) and longer phrases (trie
depth expansion). B

B. RDM complexity analysis

RDM consumes space and time for data processing. The
following analysis discusses the worst-case conditions for the
prediction process.

Proposition 3: The space complexity of RDM is O(n%)

Proof 3: At each step, RDM parses the symbol string within
the sliding window and either updates the cardinality of an
existing node or adds a new node to the trie. The worst
possible case arises when RDM increases the maximum LZ
phrase length and the parsed substrings add new nodes to the
trie. We represent the sequence of the parsed substrings as
J = T1,T1T2,...,T12T2... T, where |§] =n = @ A
sequence of this form can be represented by an order-k Markov
model which stays of order-k through the next k symbols. In
the worst case, each parsed substring adds a new node to the
trie, so at order k, the trie gains k? nodes before the model
transitions to order k + 1. Therefore, the number of nodes
generated in the trie by the time the model attains order k is
O(k?) = O(n?), because k = O(y/n). o H

Proposition 4: The time complexity of RDM is O(n?2).

Proof 4: The worst case in terms of runtime arises when
RDM parses the worst sequence § because it will prompt the
most updates. Creating or updating a node in the trie requires
finding the appropriate child of a given node along the path
that phrase traced in the trie. RDM can access a given node’s
child in constant time. Therefore, it can find a node in time
linear in the depth of the trie. When the worst-case sequence ¢
is the case where |§| = n and order k = O(y/n) there must be
an update for every order up to k before the model transitions
to order k + 1. Consequently, by the time the model attains
order k and the number of nodes generated in RDM’s trie is
O(n?), the runtime is also O(n?). A

V. RDM PREDICTION MECHANISM

RDM employs two prediction mechanisms that are used
simultaneously and are complementary to each other. The first
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is purely probabilistic and is similar to that in [2], while the
second is deterministic, being based on trie traverse in order
to make predictions. The first mechanism considers different
order Markov models and employs a blending strategy known
as exclusion [2] to build a probability distribution for each state
(symbol) occurring in the input string. When used it predicts
the state with the highest probability value as the most likely
action. We explain how the first mechanism works by referring
to Fig. 3, which represents the trie constructed by RDM for
the sequence “aaababbbbbaabccddcbaaaa”.

oroer -0

MODEL

oroer- 1

MODEL

onoer - 4

MODEL

Fig. 3. Different cases (I, II, III, IV) w.r.t the symbol prediction process. The
numbers adjacent to each node represent its cardinality in the trie

The window maintained by the predictor represents the set
of contexts RDM uses to compute the probability of the next
symbol. In our example, the last phrase “aaaa” (which is also
the current RDM window) is used. Within this phrase, the
contexts that can be used are all suffixes within the phrase,
except for the window itself (i.e., “aaa”, “aa”, “a” and the null
context). Suppose we want to calculate the probability that the
next symbol is an “a”. We see that an “a” occurs one out of
two times that the context “aaa” appears. Therefore, P(a|aaa)
= % Then we fall back to the order-2 context (i.e., the next
lower order model) with probability P,,.(2) = 5; the so-called
escape factor of the order-2 model, which corresponds to the
probability that the outcome is null. At this level, we see that
it occurs one “a”, one “aa” and one “bc” out of five times
that the context “aa” appears, therefore P(alaa) = 1. Then
the algorithm falls back (esca§)es) to the order-1 model with
probability Pe.(1) = %

By using the same technique at the order-1 context, we see
that an “a” occurs two out of ten times that the “a” appears
(the rest belonging to bigger phrases, e. g ., “aa”, “ab”, “aba”
etc.) and therefore we have P(ala) = 10. Then, for the last
time, the algorithm falls back (escapes) to the order-0 model
with probability Ps.0) = % or % At that level, we see an “a”
two times out of the 23 symbols seen so far, and therefore we
predict “a” with probability P(a| \) = 5 in the null context.

Therefore, in our example, the blended probability of seeing

A‘ LR}

an as the next symbol is:
1 1.1 22 2 2
>tT3 5+5[1—0 l_O(ﬁ)]}' ()

The second prediction mechanism employs a purely deter-
ministic approach to make predictions. It uses the continuously



updated LZ phrase “w” that drives the RDM dictionary con-
struction (see the RDMs pseudo-code) to traverse the trie and
pinpoint to the current state of the predictor. Note that at each
state we record the prediction hits of the predictor regarding
that state in the past. RDM exploits the information (history)
given from the higher order model and predicts according to
the following rules (see Fig. 3):

o Case (I): Single branch at the higher order model —
Predict the context given by the higher order model.
For example, when w = “aaa”, the predictor exploits the
information given from the 4th order model and predicts
“a” as the next symbol.

o Case (II): No higher order model — Use the probabilistic
prediction mechanism and predict the context with the
largest probability value, e.g., when w = “abb”.

When more than one branches exist under the current
state of the predictor, RDM calculates the Kendall Tau Rank
Distance (KTRD) between the ranking lists of the cardinalities
and the prediction hits between the states of the higher order
model and uses it as a yardstick for the prediction of the next
state. In order to present how RDM works in such cases we
will refer in Fig. 3 to the case where w = “b”, and we will
assume that the prediction hits regarding the states “a”, “b”
and “c” of the 2nd order model are 2, 2 and 1, respectively.
Thus, when w = “b”, RDM ranks the states of the higher order
model with regards to their cardinality and prediction hits as
follows:

State a|b|c
Rank by Cardinality 21113
Rank by Prediction Hit | 1 | 1 | 3

Then, RDM pairs each state with every other state and
counts the number of times the values in the two lists are
not in the same order:

Pair | Cardinality | Prediction Hit | Count
@@b) | 2>1 =1 X
(a,c) 2<3 1 <3

(b,c) 1 <3 1 <3

The calculation of K7TRD is a simple process which is based
on a merge sort algorithm and requires time O(nlogn). If n
is the list size, the normalized KTRD is :

Discordant pairs

1
nx(n—1/2  3%(3-1)/2

Then RDM uses the first pair of branches it finds (from left
to right) at the higher order model and calculates the difference
between their cardinalities. Then, the absolute value of the
result is divided by the cardinality of the current status of the
predictor (we term it here RESULT) and is compared with
the KTRD. Note that when the higher order model consists of
more than two states then Case III and/or Case IV scenarios
continue to be executed until all states have been examined:

o Case (Ill): RESULT < KTRD — Use the probabilistic

prediction mechanism and predict the context with the
largest probability value. For example, when w = “b”,

KTRD =

=0.33. (3)
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the first pair of states we examine in the order-2 model

is “a”, “b”. Thus, we have RESULT = % =

13241 — 0.125. Since RESULT < KTRD the state with
the largest probability value between the two is predicted.
Case (IV): RESULT > KTRD — Predict the context
with the larger cardinality. For example, when w = “b”,
if the pair of states under consideration is “b” and “c”,
then we have RESULT = el — 1l — 375,
Since RESULT > KTRD it is predicted the state “b”
because it has the largest cardinality.

Practically, the use of KTRD enables RDM to speed up
the prediction process; it predicts the state with the larger
relative cardinality among the states of the higher order model
as long as the respective number of discordant pairs between
the ranking lists of the cardinalities and the prediction hits
remains small.

VI. RDM PERFORMANCE EVALUATION

We perform a simulation-based evaluation of the perfor-
mance of RDM. To this end, we designed experiments with
vehicle itineraries that are segmented and are represented by
datasets with discrete symbol sequences that vary with respect
to the number and repeatability of patterns within them.

A. Simulation setting

The next paragraphs describe the competing algorithms, the
datasets, and the performance measures used.

1) Methods compared: We use the LZ78 [19] compression
algorithm as the baseline algorithm for our comparisons due
to its simplicity. We implement and evaluate also LeZi-
Update [2], Active LeZi [6] and MPPM [5] since the superi-
ority of Markovian predictors over other techniques has been
explained in [10].

2) Datasets used: Since there are no publicly available
datasets containing real vehicle movements over segmented
city roads, we created five datasets in order to evaluate the
performance of RDM. Four simulate vehicle itineraries over a
road graph with and without noise, and the fifth is a realistic
dataset produced using SUMO an open traffic simulation suite.

The first dataset, named s4n0, consists of an alphabet of
four different symbols (s4) and contains no noise (n0). It has
perfect regularity in terms of the vehicle patterns and a small
alphabet (few road-segmlIDs) that creates conditions for all the
algorithms to have good prediction performance. In the second
dataset, named s4n20, we deliberately disrupted the patterns to
a percentage of 20%. The third dataset was created by using 20
symbols and it is polluted with 10% noise (s20n10), whereas
the fourth is similar to the third, but with 30% noise (s20n30).
The realistic dataset , named Volosltineraries, includes the
mobility of 210 vehicles travelling in the road network of the
city of Volos (Greece) with different mobility patterns. The
traffic simulations are conducted with SUMO and the trace
files are injected into our custom simulator in order to perform
prediction. Vehicles follow one of three different predefined
routes, having a random velocity with a mean value of 11 m/s
and a variation of 5 m/s. By using big variation in vehicle



velocities and by recording the position of each vehicle every
T seconds (by default 5 seconds), we reassured that the final
recorded trace for each vehicle is different from any other
even if they follow the same path. Thus, each vehicle trace
may contain repeating road segments representing along with
the transition from one road segment to another, the staying
on a road segment due to traffic congestion, road length and
maximum velocity limit. The resulting alphabet created from
the realistic dataset consists of several dozen different symbols.
The total simulation time is one hour.

3) Performance measures: We use three measures to quan-
tify performance. The first, is the prediction accuracy, which
represents the percentage of correct predictions per 1,000
symbols of the input sequence. The second, is the processing
time (milliseconds), in the form of the maximum time needed
(worst case scenario) for a single prediction in a 1,000 symbol
subsequence of the input sequence; it portrays the applicability
of each competing algorithm in a real world ITS. The third is
the number of trie nodes entered into the trie per 1000 symbols
of the input sequence; it is an abstract measure of the memory
footprint independent of any implementation.

4) Location update techniques: We update the movement
history of a vehicle whenever it crosses the boundaries of a
new road segment (with the use of the GPS technology) and
every T seconds (by default 5 seconds). With our method:

o We ensure that all distinct road segmIDs will be recorded;
missed road segmIDs effect on movement history is like
noise in the symbol sequence, it disrupts the continuity
of the symbols and affects negatively the repetition of the
symbol strings.

« We differentiate each vehicle’s movement patterns based
on its habitual duration of stay in a road segmlID.

o« We control the amount of information entered in the
system.

B. Evaluation of the results

The simulations were run on a PC with Intel core 2 duo
1.7 MHz CPU, 2GB main memory, 80GB hard disk 7200
rpm hard disk and MSWindows 7 64bit. The codes of the
competing algorithms were compiled in Matlab R2015a. On
the other hand, a typical communications box supporting
Dedicated Short-Range Communications (DSRC), such as
those commercialized by DELPHI runs on an x86 architecture
Intel core 2 duo 2 GHz CPU, with 2GB onboard DDR2 RAM,
and onboard 8 GB Solid State Disk. Therefore, our algorithms
can run on an industrial onboard unit.

1) Tuning the RDM: We investigated the impact of blending
the models of all orders and using different inter record time
settings on RDM’s performance.

a) The depth factor parameter: It enables RDM to
exploit only a limited number of lower-order models during
the blending strategy [2]. Practically, when excluding some
of the lower-order models we bias the system to predict
faster. However, we expect that happening at no cost to the
RDM’s performance, because the excluded models impact
on the final probability assignment is suppressed due to the

561

escape factor. In Fig. 4 we observe that RDM exhibits best
performance in terms of prediction accuracy when we set the
depthFactor equal to 1. A setting equal to 1 means that during
the probability calculations we use only the order model in
which the predictor currently lies and the immediate previous
one (larger values for this parameter imply exploitation of
smaller order models). In general, when depthFactor> 1 the
performance remains (almost) the same, as observed also
in [18], however when a performance degradation exists it
is due to past vehicle mobility patterns (not concerning the
present vehicle movement) that are taken into account in the
probability calculations.

Depth Factor
Dataset 0 1 2 3 4 5 6 7 8 9 1
s4n0 0.9 0.9 0.9832 | 0.98: 0.9 0.9 0.98: 0.98: 0.9
$4n20 | 0.94 0.94 0.9431 ] 0.94 0.94 0.94 0.94 0.94: 0.94
s20n10 | 0.7 0.7184 | 0.7184 | 0.7184 0.7 0.7 0.7184 | 0.7184 0.7
$20n30 | 0.36 0.3645 | 0.36 [0-3613 | 0.3613 | 0.3613 | 0.36
Volosiltin | 0.8466 0.8466 | 0.84 0.8466 | 0.8466 | 0.8466 | 0.84f

4 1 1
3 1 1
1 4 4

050 | 013 1 0.3613 |

0.3650 |
0.8466

e B B

0.8466 0.846

Fig. 4. Impact of depthFactor parameter on RDM’s prediction accuracy.

b) The inter record time - T: It influences decisively the
frequency of the prediction process. We conducted several
experiments w.r.t the Volosltineraries dataset to explore the
impact of various inter record time settings on the performance
of RDM and the results are presented in Fig. 5. In our work
we set T = 5 sec as a tradeoff between RDM’s prediction
accuracy performance (Fig. 5 top plot) and the growth rate
of its trie (Fig. 5 bottom plot). We avoid using settings of
T < 5secand T > 10 sec because they miss to provide the
predictions in a timely manner with each road segment change
(which is a requirement for an online predictor). Note that the
respective performance of RDM when T = 1 sec is deceptive
as it is a consequence of the plethora of symbols that enter
in the system in short time. A setting of T = 10 sec is also
avoided as it leads to a larger trie (see Fig. 5 bottom plot).
Event though that with a setting of T = 5 sec the RDM’s
trie is almost 1.7 times the respective trie of T = 30 sec, this
is acceptable for the resource-rich VANET environment that
RDM is planned to work.
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Fig. 5. Impact of Inter Record Time on RDM’s performance

2) Comparison of the competing algorithms: The top plot
in Fig. 6 depicts the performance of the competitors regarding
their prediction accuracy for the first dataset (s4n0); RDM
achieves almost 99% accuracy on the average whereas its
competitors have inferior performance and they stagnate to a
prediction accuracy of 70% at most. We expect that algorithms
will achieve fast convergence and very good performance



because the alphabet is small and the trajectories are noiseless
(existence of very few and strong patterns). The bottom plot in
Fig. 6 shows the performance of the algorithms regarding their
prediction accuracy for the second dataset (s4n20), which is
noisier. RDM still exhibits very good performance (around
95% on the average and a maximum of 98.5%), however,
now it is able to achieve more than 90% prediction accuracy
only after consuming 4,000 symbols (contrast this to a 95%
prediction accuracy after consuming only 2,000 symbols for
the previous plot) because of the noise. The other algorithms
performance is around 45% (on the average). Therefore, the
rich dictionary of RDM and its new prediction mechanism
make RDM to be always better than its competitors, and the
performance gap widens (from 50% to 120% on the average)
when noise is introduced.
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Fig. 6. Prediction accuracy (%) for small alphabets.

In the next experiment we increase the size of the alphabet,
and evaluate the competitors under moderate (s20n10) and
heavier (s20n30) noise. The results are illustrated in the two
plots of Fig. 7. We expect that all algorithms performance
will degrade significantly because now the alphabet is larger.
Indeed, RDM achieves 72% and 37% performance for these
datasets (contrast this to 99% and 95% accuracy in the
previous two plots). Moreover, the distortion of the patterns
due to the introduction of noise decisively affects RDM’s
performance, i.e., the prediction accuracy drops from 72%
to 37% for s20n10 and s20n30, respectively. This drop in
performance happens because RDM’s deterministic prediction
model cannot be widely exploited and thus it consults mainly
the probabilistic model. However, RDM maintains the relative
performance gap with its competitors (50% - 60% better).
As expected, the performance gap between RDM and its
competitors can not be as high as before, due a) to the larger
alphabet, and b) to higher noise percentage (10% and 30%
versus 0% and 20%), which collectively destroys the repetitive
movement patterns.

Fig. 8 (top plot) depicts the performance of the competitors
regarding their prediction accuracy for the Volosltineraries
dataset. RDM if the best performing argorithm; it converges
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to a prediction accuracy of 80% after having consumed only
2.000 symbols and achieves a mean prediction accuracy of
85% and a maximum of 90%. The performance of the other
competitors is an increasing function with respect to the
number of symbols that enter in the system. However they
need to consume at least 5.000 symbols in order to converge
to a prediction accuracy of 50%. MPPM is the second best
performing algorithm with a mean prediction accuracy of 63%
and a maximum of 76%. The rest of the competitors present
a prediction accuracy of 57%, on the average. Therefore this
realistic case reaffirms the earlier results, however now the
performance gap with the second best performing algorithm
(MPPM) narrows to 35%. In sum, we have shown in all the
plots that RDM can achieve high prediction accuracy.

10— RDM —0— LZ78 —4— LZU —7— ALZ —O— MPPM o o
OO0 —g- 0 0-0-—g-o 0000
D/D—D—D/D\‘}{'*D‘D’D’Dﬂ/‘}ﬂ_‘}ﬂﬂ o0 o0 ]

L
dataset Volosltineraries

A

3
!

Prediction time (msecs;

Fig. 8. Competing algorithms efficiency for the Volosltineraries dataset.

The middle plot of Fig. 8 depicts the memory footprint of
the algorithms in the form of node count evolution in each
respective trie as each symbol of the Volosltineraries dataset
is processed. It can be seen that the pace of trie growth
is logarithmic with respect to the sequence size for all the
competitors except for MPPM where its trie stops growing
after the parsing of 10,000 symbols as a consequence of



the fixed depth frequency tree of K™ = 5, it constructs.
As expected, RDM constructs the largest trie which was our
initial goal so as to achieve improved prediction accuracy.
MPPM constructs thesmallest trie followed by LZ78 and LZU
because of the small dictionary they have. It is noteworthy
that the RDM’s trie is the double size the respective ALZ’s
trie and two orders of magnitude larger than the LZUs and
LZ78s respective tries. Moreover, RDM and ALZ trie grows
much faster, whereas LZU trie size also starts growing quickly
but stop increasing so fast at a lower level. It is noteworthy
that the large trie that RDM produces does not lead to
significant communication overhead. In an operational VANET
environment a single packet can accommodate a large number
of trie nodes, and in any case, if two vehicles need to exchange
their mobility profile, they will not exchange the full trie, but
rather only the part of it (a few branches) that correspond to the
particular area where they are both moving at that particular
time.

The bottom plot of Fig. 8 depicts the per-symbol maxi-
mum prediction time needed (worst case in a 1,000 symbol
sequence) for the Volosltineraries dataset. Intuitively some-
one would expect the largest dictionary be the most time-
consuming to process, however RDM succeeds in being faster
than the majority of its competitors and competitive to MPPM,
because of the hybrid mechanism it employs for prediction.
It takes 6 milliseconds (worst case) for the RDM to deliver
predictions, which is fast enough to support real-time appli-
cations, such as vehicular safety applications. On the other
hand, MPPM requires the least processing effort which is due
to the fixed depth (k™" = 5) frequency tree that it constructs.
Overall, RDM is the best performing predictor; it constructs
the largest trie, and it is not the slowest algorithm. MPPM
in general exhibits similar performance with ALZ except for
the realistic dataset (where it is better) thereby confirming
the results in [13] and for the s4NO dataset (where it is
worse). ALZ 1is better than LZ78 in terms of accuracy for
large alphabets and input sequences with a small length, thus
confirming the results in [6]. It also emerges that ALZ is
not significantly better than LZ78 in the other cases, thereby
confirming the findings in [14], but contradicting the findings
in [6], because we used the exclusion strategy. ALZ converges
faster than LZ78, which supports the results in [6] and all
the predictors tries are growing at a logarithmic pace (except
MPPM), which mirrors the behavior reported in [14]. Finally,
the creation of RDM addresses a comment that appeared
in [18] stating that there is a significant gap that needs be
filled by the improvement of online Markov predictors.

VII. CONCLUSIONS

Accurate prediction of vehicular trajectories in a VANET
environment is an essential mechanism for ITS. The prediction
methods based on Markov predictors are particularly appeal-
ing, because of their generality and prediction accuracy. Tai-
lored for the resource-rich VANET environments, the proposed
RDM Markov predictor remains highly efficient in terms of
prediction accuracy and per-symbol maximum prediction time.
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RDM is likely to be of immediate interest to ITS providers. By
maintaining global dictionaries along with individual vehicle
profile decoded from updates, it will be possible to predict
group behavior. In VANETS, this can lead to better traffic
management, and more efficient bandwidth management and
quality of service (QoS) in p2p applications. As future work
we plan to bound the growth of the frequency tree that
RDM produces and integrate RDM with novel VANET routing
protocols that can be used in safety or ecorouting applications.
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