
IEEE INTERNET COMPUTING 1089-7801/04/$20.00 © 2004 IEEE Published by the IEEE Computer Society MAY • JUNE 2004 37

D
at

a
D

is
se

m
in

at
io

n
on

 t
he

 W
eb

Dimitrios Katsaros
and Yannis Manolopoulos
Aristotle University

Web Caching
in Broadcast Mobile
Wireless Environments

Effectively exploiting available communication bandwidth and client resources is

vital in wireless mobile environments. One technique for doing so is client-side

data caching, which helps reduce latency and conserve network resources. The

SliCache generic self-tunable cache-replacement policy addresses these issues by

using intelligent slicing of the cache space and novel methods for selecting which

objects to purge. Performance evaluations show that SliCache improves mobile

clients’ access to Web objects compared to other common policies.

As used by current Web servers, uni-
cast delivery is a waste of resources
for dissemination-based applications

(those in which a dynamic client popula-
tion requests data from servers that
respond with the requested items). Net-
work and server loads increase with each
additional client because data must be
transmitted in response to each client
request. In contrast, broadcast is becom-
ing an increasingly appealing solution
because of its excellent scalability: a sin-
gle broadcast can satisfy all pending
requests for a given item. Yet, scarce
bandwidth and client resources leave
wireless users with lengthy access delays.
Researchers have proposed various sched-

uling algorithms that attempt to reduce
average or maximum latency, but in
addressing the “average” mobile client’s
needs, these approaches sacrifice the indi-
vidual for the sake of the majority. As
Acharya and colleagues have noted, “tun-
ing the performance of the broadcast
channel is a zero-sum game.”1 Improving
broadcast for any single access distribu-
tion hurts performance for other clients.
Data caching at the mobile client is there-
fore vital for reducing the latency expe-
rienced by clients and for conserving net-
work resources.

Current proposals for cache replace-
ment in wireless mobile environments are
generally limited because they assume

knowledge of the server’s schedule or are too heav-
ily parameterized to adapt easily to changing
access patterns (see the sidebar, “Related Work in
Caching for Wireless Environments”). To meet the
demands of mobile environments, a replacement
policy should

• discriminate between objects that are likely to
be accessed in the near future and those that
are not;

• refrain from using (locally estimated or server-
supplied) tunable parameters, which don’t
adapt well to changing access distributions;

• fairly and effectively account for variable
object sizes; and

• refrain from making any assumptions about the
server’s schedule format because mobile clients
will move to areas covered by diverse servers.

To satisfy these goals, we developed a generic
cache-replacement policy to facilitate mobile-
client caching without making ad hoc assump-
tions about the network’s topology or
architecture. SliCache is a self-tunable policy that
requires neither knowledge of the server’s sched-
ule nor maintenance of any tunable parameters.
It combines access rate and recency metrics to
quantify the clients’ preferences for objects in the
client-side cache. It employs intelligent slicing of
the cache space and novel methods for selecting
the replacement victim — the object purged from
the cache when space is needed. In this article, we
describe SliCache’s design and present perfor-
mance results that show significant improve-
ments over other policies in terms of average
stretch — the ratio of an object’s access latency to
its service time.

38 MAY • JUNE 2004 www.computer.org/internet/ IEEE INTERNET COMPUTING

Data Dissemination on the Web

Related Work in Caching in Wireless Mobile Environments

There are very few proposals for cache-
replacement policies in wireless mobile

environments, and most of the ones that
have been introduced are designed for pure
push-based broadcast.

The PIX policy assumes that the client
has exact knowledge of the broadcast disk
in which the object belongs.1 Algorithms
based on look-ahead (knowledge of future
broadcasts) — such as the Gray algorithm2

and the policy proposed by Tassiulas3 —
suffer from high implementation costs; this
is primarily because they assume full knowl-
edge of the broadcast schedule.

For on-demand broadcasts, Xu et al.
proposed the minimum stretch integrated
with access rates, update frequencies, and
cache validation delay (Min-Saud) policy.4

Min-Saud also considers access frequency,
retrieval cost, object size, and object-
update frequency. Tests have shown that it
performs best in limited settings, such as
the Independent Reference Model (which
assumes that requests are independent and
have fixed probability, thus precluding cor-
related references) and Poisson distributions
for object accesses (which assumes that
the interarrival times for object access fol-
low the exponential distribution).Yin,Cao,
and Cai also proposed an equivalent to
Min-Saud,5 but their design (like Min-Saud’s)

requires cooperation from the server to
set values for several included tunable para-
meters. Obviously, for a client that fre-
quently disconnects or roams inside a cel-
lular system’s coverage area, maintaining
these parameters is problematic.

Hara6 has proposed a cooperative
caching policy for mobile ad hoc net-
works, but it is computationally demand-
ing and assumes knowledge of the net-
work topology.

Researchers have proposed numerous
replacement policies for variable-size
objects in point-to-point settings,7 but
most of these are tailored for Web proxies.
Moreover, our testing8 has shown that
these policies tend to favor either recent-
ly accessed (as in the Greedy Dual-Size
algorithm9) or frequently accessed (as with
the Dynamic Aging Least-Frequently-Used
policy) objects. In addition, such policies
usually favor small objects.When trying to
combine recency and frequency, these algo-
rithms tend to employ hard-to-set tunable
parameters. Moreover, none of the pro-
posed replacement policies are suitable for
wireless environments.

References
1. S. Acharya et al.,“Broadcast Disks: Data Manage-

ment for Asymmetric Communications Environ-

ments,” Proc. ACM SIGMOD Int’l Conf.Management

of Data, ACM Press, 1995, pp. 199–210.

2. S. Khanna and V. Liberatore,“On Broadcast Disk

Paging,” SIAM J. Computing, vol. 29, no. 5, 2000, pp.

1683–1702.

3. L. Tassiulas and C. Su,“Optimal Memory Manage-

ment Strategies for a Mobile User in a Broadcast

Data Delivery System,” IEEE J. Selected Areas in

Comm., vol. 15, no. 7, 1997, pp. 1226–1238.

4. J.Xu et al.,“Performance Evaluation of an Optimal

Cache Replacement Policy for Wireless Data Dis-

semination,” IEEE Trans. Knowledge and Data Eng.,

vol. 16, no. 1, 2004, pp. 125–139.

5. L.Yin,G.Cao, and Y.Cai,“A Generalized Target-Dri-

ven Cache Replacement Policy for Mobile Envi-

ronments,” Proc. Int’l Symp. Applications and the Inter-

net (SAINT ‘03), IEEE CS Press, 2003, pp. 14–21.

6. T. Hara,“Cooperative Caching by Mobile Clients

in Push-Based Information Systems,” Proc. Int’l Conf.

Information and Knowledge Management (CIKM ‘02),

ACM Press, 2002, pp. 186–193.

7. H. Bahn et al.,“Efficient Replacement of Nonuni-

form Objects in Web Caches,” Computer, vol. 35,

no. 6, 2002, pp. 65–73.

8. D.Katsaros and Y.Manolopoulos,“Caching in Web

Memory Hierarchies,” Proc. Symp. Applied Comput-

ing (SAC 04),ACM Press, 2004, pp. 1109–1113.

9. P. Cao and S. Irani, “Cost-Aware WWW Proxy

Caching Algorithms,” Proc. Usenix Symp. Internet

Technologies and Systems (USITS 97),Usenix Assoc.,

pp. 193–206.

The SliCache Policy
In designing our proposed replacement policy, we
were guided by a few simple principles. First, we
make no attempt to predict the server’s schedule
(that is, the retrieval delay for object delivery)
because any successful client-side predictions will
cause the server to change its schedule to respond
to the modified aggregate access pattern created
by object caching. We also want to quantify the
client’s transient and steady preference for certain
objects, but without asking for assistance from the
server. Quantifying this preference is a complicat-
ed task. The replacement policy should gracefully
combine the object’s access rate and the time the
client most recently accessed it. Finally, the policy
must consider the variable object size in order to
optimize the stretch metric.

SliCache partitions the cache space into two
segments (slices) that are used to accommodate
cached objects:

• The recency-slice (R-slice) isolates objects that
appear only once — so-called “one timers” — in
the whole requests stream.

• The interaccess-slice (I-slice) stores the objects
that comprise the client’s working set — those
that the client has accessed most frequently or
recently.

The slices grow and shrink deliberately according
to the request stream’s characteristics. SliCache
uses different ranking functions in the slices to
measure the benefit of keeping an object in cache.
Objects accessed at least twice while in the cache
reside in the I-slice until they are evicted, where-
as objects accessed only once are kept in the R-
slice. We call the difference between the current
time tc and the time the client last accessed a given
object, the recency interval; the interval between
the client’s penultimate and most recent access of
an object is the last-interaccess interval.

Ranking Objects in SliCache
The R-slice employs a ranking function based on
the ratio of the object’s recency to its size — a sim-
ple heuristic designed to accommodate many
recently accessed objects. The I-slice’s ranking
function takes the product of the object’s last-
interaccess interval and its recency. By using the
last interaccess as a measure of access frequency,
we assume that the interarrival time till the next
request will be drawn from the same distribution
as the times observed so far. Thus, we can use the

observed interarrival times to decide the popular-
ity of an object that is suited to the individual
client. Note that we don’t consider size in the I-
slice’s criteria because we want to avoid any bias
toward small objects, which would aggravate the
overall stretch.

Figure 1 illustrates the possible arrangement of

IEEE INTERNET COMPUTING www.computer.org/internet/ MAY • JUNE 2004 39

Web Caching

Figure 1. Access to candidate victims, with varying lengths for the R-
victim’s recency interval δ2 and for the I-victim’s recency interval δ1
and last-interaccess interval δ3. (a) Because the access to the R-
victim happens before the two accesses to the I-victim, we favor the
I-victim and purge the R-victim. (b) The client accesses the R-victim
between its two accesses to the I-victim (relative lengths: δ1 < δ3 <
δ2). Thus, we purge the R-victim. (c) The client accesses the R-victim
between its two accesses to the I-victim (relative lengths: δ3 < δ1 <
δ2), so we again favor the I-victim. (d) The client accesses the R-
victim in-between its two accesses to the I-victim (relative lengths: δ1
< δ2 < δ3). Thus, we favor the I-victim because it maintains its
popularity (δ1 < δ3) and has been accessed more recently than the
R-victim (δ1 < δ2). (e) The client accesses the R-victim after its two
accesses to the I-victim (relative lengths: δ3 < δ2 < δ1). Again, we
favor the R-victim because the I-victim loses its popularity (δ1 > δ3)
and has been accessed less recently than the R-victim (δ1 > δ2). (f)
The client accesses the R-victim after its two accesses to the I-victim
(relative lengths: δ2 < δ1 < δ3). Thus, we favor the I-victim because it
maintains its popularity (δ1 < δ3). (g) The client accesses the R-
victim after its two accesses to the I-victim (relative lengths: δ2 < δ3
< δ1). As a result, we purge the I-victim because it loses its
popularity (δ1 > δ3) and has been accessed less recently than the R-
victim (δ1 > δ2).

δ2

δ3 δ1

R1 I1 I2 tc

(a)

δ2

δ3 δ1

R1I1 I2 tc

(b)
δ2

δ3 δ1

R1I1 I2 tc

(c)

δ1

δ3 δ2

R1I1 I2 tc

(f)
δ1

δ3 δ2

R1I1 I2 tc

(g)

δ1

δ3 δ2

R1I1 I2 tc

(e)
δ2

δ3 δ1

R1I1 I2 tc

(d)

accesses to the two highest-ranking objects in a
slice. We select the replacement victim from these
candidate victims. The one originating from the R-
slice, we call the R-victim; the one originating
from the I-slice, we call the I-victim. Let R1 be the
access time of the R-victim. Let I1 be the time of
the penultimate reference to the I-victim and I2 be
the time of the last reference to it. Let tc be the cur-
rent time; δ1 is the recency interval of the I-victim
(δ1 = tc – I2); δ2 is the recency interval of the R-
victim (δ2 = tc – R1); and δ3 is the last-interaccess
interval of the I-victim (δ3 = I2 – I1).

In Figure 1a, the R-victim was accessed before
the two accesses to the I-victim. In Figures 1b, 1c,
and 1d, the access to R-victim happened between
the two accesses to the I-victim. In Figures 1e, 1f,
and 1g, the access to R-victim happened after the
two accesses to the I-victim. The primary differ-
ence between Figures 1b, 1c, and 1d is the relative
lengths of the intervals δ1, δ2, and δ3. (Figures 1e,
1f, and 1g share a similar relationship).

In order to select which object will be purged
(the R-victim or I-victim), we must estimate
whether the I-victim is gradually losing its popu-
larity, while estimating the R-victim’s potential for
a second reference. To do so, we compare the inter-
vals between δ1 and δ3 and between δ1 and δ2. A
comparison between δ1 and δ2 estimates the vic-
tims’ short-term temporal locality (due to corre-
lated accesses or transient preference to it). By
comparing δ1 and δ3, we can estimate the I-vic-
tim’s long-term (steady-state) popularity.

Among the scenarios in Figure 1, we favor the
I-victim in all cases in which δ1 < δ3 — that is, in
a, c, and e — which indicates that the object main-
tains its popularity. When δ1 > δ3, we favor the I-
victim only when δ1 < δ2, as in Figure 1c. (This lets
us protect the cache from objects the client is like-
ly to request only once.) Note that we also favor
the I-victim when δ2 > δ1 and δ2 > δ3 (as in Figure
1a) because we consider the R-victim a one-timer.

Implementation Issues
In our work with SliCache, we faced two critical
implementation issues:

• Measuring time for estimating the interaccess
and recency intervals, and

• Managing the metadata recorded for each
cached object.

To solve the former, we decided to measure interac-
cess and recency intervals using virtual time, which

we calculate from the number of requests posed by
the client to the server: after each request, a virtual
time clock (a counter created by SliCache and ini-
tialized to zero) in each client cache advances by
one time unit. The counter is reset to zero every time
the cache empties. Different clients’ time clocks will
reflect different virtual times, depending on the
number of requests they’ve made since they started
operation. (Note that our virtual clocks are not relat-
ed, for instance, to network synchronization clocks;
they simply count client requests. In this way, we
avoid the trouble of synchronization caused by the
client disconnections.)

For each cached object oi, we need to track its
size si, the time tl of the last reference to it, and the
time tp of the penultimate reference to it. The
metadata are kept in two separate max-heaps —
binary trees that store sets of keys in such a way
that the key with the maximum value is always
found at the max-heap’s root. In SliCache, the R-
heap stores entries for the R-slice objects, and the
I-heap stores entries for the I-slice objects. The R-
heap’s sorting key is the ratio

whereas the I-heap’s sorting key is

The latter’s dependence on the current time increas-
es the time complexity, though not significantly;
the build-heap operation (which transforms a
binary tree that doesn’t obey the max-heap prop-
erty into a max-heap) is invoked only on the rela-
tively small I-heap, which holds only the client’s
working set of objects. In case of ties, we favor the
most recently accessed object.

Figure 2 shows our implementation of the Sli-
Cache policy. If a requested object oi is larger than
the total cache space (si > cs), SliCache doesn’t
consider it for caching. If SliCache finds the
object in the I-slice, it simply records the object’s
updated last-interaccess time and last access time
to the heaps (via the update-statistics com-
mand). If we find the object in the R-slice, Sli-
Cache promotes it to the I-slice — the working-
object cache. (We assume that an insertion to a
slice always records the appropriate metadata —
that is, last access time and penultimate access
time if the objected was accessed twice or more.)
If the object is larger than the free cache space (si

> a), we must evict some objects by identifying

−
− −

1
() * ()

.
t t t tc l l p

−t
s

l

i

,

40 MAY • JUNE 2004 www.computer.org/internet/ IEEE INTERNET COMPUTING

Data Dissemination on the Web

the R-victim and I-victim.
Given that we use max-heaps and that the R-

slice sorting key doesn’t depend on the current
time, the R-victim is always found at the top of the
R-heap. For the I-heap, however, we must update
the sorting-key values for all objects using the
I-heap-build-heap command. We then call
evictOne to purge as many objects as needed to
accommodate oi. Note that I-heap-build-heap
executes at most once for each call of SliCache,
regardless of how many times evictOne is called.

Performance Evaluation
We conducted a series of tests comparing SliCache
to several other state-of-the-art policies:

• the Least-Recently-Used (LRU) caching policy
expunges from the cache the object that was
least recently referenced,

• the LRU-k policy, a generalization of LRU,
evicts the object whose k-th reference is fur-
thest in the past,

• the PIX1 policy evicts the object with the small-
est ratio of access-frequency to broadcast-
frequency, and

• the minimum stretch integrated with access
rates, update frequency, and cache validation
delay2 (Min-Saud) policy can be considered a
generalization of PIX that also takes into
account the object’s size and update frequency.

All of these policies operate on the clients’ cache
and maintain various data (object size, popularity,
cache-entry time, and so on), which they use to
make replacement decisions. To evaluate and com-
pare performance among them, we used a simula-
tion model with a single-cell environment, in
which one server serves multiple clients. In the rest
of this section, we describe how we implemented
the considered replacement policies.

The PIX policy is tightly related to the Broad-
cast-Disks paradigm introduced by Acharya et al.1

PIX requires knowledge of the disk to which the
object belongs, and thus, of its exact broadcast fre-
quency. In our tests, we approximated this fre-
quency with the well-known exponential-
smoothing-based formula, which estimates the
new value for a variable as a weighted average of
its past values. We implemented the Min-Saud pol-
icy without its object-update consideration — that
is, with negligible object-validation delay. We set
all other parameters as indicated by Xu et al.2 Real,
publicly available Web-request streams, such as

those at the Internet Traffic Archive (http://
ita.ee.lbl.gov/), are limited in that each client per-
forms only a few requests. Moreover, all such
streams exhibit the same highly skewed (Zipfian)
access pattern, in which a few objects are respon-
sible for the great majority of accesses (following
what is known as Zipf’s law). Instead, we used syn-
thetically generated data to test the policies for

IEEE INTERNET COMPUTING www.computer.org/internet/ MAY • JUNE 2004 41

Web Caching

Figure 2. Pseudocode for the SliCache policy. The evictOne
procedure selects the replacement victim, whereas SliCache is
responsible for placing the cached objects into the correct slice.

Algorithm SliCache
// Cache space = cs.
// Free cache space = a.
// Request object oi of size si.
begin
if(si > cs) return;
if(I-heap-inHeap(oi))

update-statistics;
else if(R-heap-inHeap(oi))

R-heap-remove(oi);
I-heap-insert(oi);

else
if(si > a)

I-heap-build-heap();
while(a < si)

evictOne();
R-heap-insert(oi);
a – = si;

end

procedure evictOne
// δ1: recency interval of I-victim (of dI).
// δ2: recency interval of R-victim (of dR).
// δ3: last interaccess interval of I-victim (of dI).
begin
if(empty(I-heap))

finalVictim= R-heap-extract-max();
else if(empty(R-heap))

finalVictim= I-heap-extract-max();
else

dR = R-heap-return-max();
dI = I-heap-return-max();
if((δ1 > δ3) AND (δ1 > δ2))

finalVictim= I-heap-extract-max();
else

finalVictim= R-heap-extract-max();
a + = sfinalVictim
end

various data and access distributions (uniform and
Zipfian) and for steady-state caches.

System Parameters
Our simulated system is an infrastructured wire-
less system consisting of a single server (base sta-
tion) and several clients roaming inside the cell it
serves. The base station communicates via a wired
network to database servers or other stations. This
architecture supports an uplink channel, through
which mobile clients place their requests, and a
broadcast channel (1,000 Kbps in our tests)

through which the server transmits requested
objects from the single queue it maintains. The
client keeps listening to the broadcast channel
until it gets the requested objects.

The database is a collection of DB objects and
is partitioned into Regions-Group (RNG) disjoint
regions that each hold an equal number of objects.
By default, the database is set to 10 regions that
store up to 200 objects apiece. The default cache
size is equal to 5 percent of the database size. The
access probability pi for each region is determined
by a Zipfian distribution with parameter θ (set to
0.90 by default):

Objects range in size from minSize (2 Kbytes) to
maxSize (2,000 Kbytes). Within a given region, all
objects have an equal probability of being
accessed. Again following Xu et al., we considered
the following distributions:

• Increasing (Incrt): sizei = minSize +

where 1 ≤ i ≤ DB.
• Decreasing (Decrt): sizei = maxSize –

where 1 ≤ i ≤ DB.

The smaller objects are more popular for the Incrt
distribution, whereas the larger objects are more
popular for the Decrt distribution. Due to space
restrictions, we focus on the Incrt results here, but
the Decrt results are similar.

All 50 simulated clients follow the same access
pattern, generating requests for objects according
to the Zipfian distribution and never disconnect-
ing. This setting — homogeneous clients and no
think time (between query response and next
request) or disconnection time — is ideal for the
PIX and Min-Saud policies because it allows them
to continuously monitor the broadcast channel for
the current parameter values supplied by the serv-
er. Moreover, the tunable parameter values remain
stable and relatively accurately predictable because
the clients have identical and stable access pat-

() * (max min)
,

i Size Size
DB

− − +1 1

() * (max min)
,

i Size Size
DB

− − +1 1

p
i

i
i RNGi

i

n= ≤ ≤
=∑

(/)

(/)
,

1

1
1

1

θ

θ

42 MAY • JUNE 2004 www.computer.org/internet/ IEEE INTERNET COMPUTING

Data Dissemination on the Web

Figure 3. Average stretch versus cache size. (a) For the increasing
size distribution, the average stretch achieved by SliCache is up to
36 percent better than PIX, the second-best performing policy. (b)
For the decreasing size distribution, SliCache achieves stable 10-
percent performance gains over its competitors.

80

85

90

95

100

105

110

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 s
tr

et
ch

Cache size (percent)

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 s
tr

et
ch

Cache size (percent)

SliCache
LRU

LRU-k
Pix

Min-Saud

SliCache
LRU

LRU-k
Pix

Min-Saud

(b)

(a)

terns. This is significant because it lets PIX and
Min-Saud, which heavily rely on tunables, achieve
their best performance.

The server in our tests ran the R × W scheduling
algorithm,3 which takes into account each object’s
popularity and the time since the last broadcast in
selecting which object to broadcast next. R × W
performed best for a large number of data and
access distributions, achieving the lowest average
and worst access time among its competitors.
Client requests were buffered at the server, whose
queue we assumed to be infinite, thus ensuring
that the scheduling algorithm knows the exact
number of requests for each object in order to
make scheduling decisions. We further assumed
zero latency for fetching objects from cache. We
obtained results for the system in stable state; that
is, each client finished at least 4,000 queries after
its cache was full, thus eliminating the warm-up
effect on the client cache and broadcast channel.

To measure the cache’s efficiency, we mea-
sured requests’ average stretch.4 Neither hit ratio
nor byte-hit ratio is appropriate in wireless
mobile Web environments because the latency
for retrieving objects depends on the broadcast
schedule; these two metrics can overestimate the
cache’s performance in wireless environments.
Average latency — elapsed time between the start
of a request and the end of the response to it —
is also an unfair metric because it disregards the
variable object size, which translates into vari-
able service time.

Experimental Results
We examined our proposed caching scheme’s per-
formance for varying cache sizes and skew —
which measures the relative preference to each
object — in the access distribution (zero skew
implies a uniform access pattern), as well as for
different client access patterns and different serv-
er schedules. Policies (such as Min-Saud) normal-
ize an object’s caching profit according to its size,
thus showing a bias toward small files and com-
pletely failing when this preference is absent. Sli-
Cache, on the other hand, provides a graceful
balance between recency and frequency, while
treating small and large objects evenly (in the I-
slice) and thus minimizing the stretch metric.
Moreover, its implementation cost is low in terms
of space reserved for metadata and processing
time; our experiments showed that the average
number of cached objects in the I-slice is equal to
23 percent of the total number of cached objects.

Performance for various cache sizes. The graphs
in Figure 3 illustrate the replacement policies’
performance, measured as the average stretch
they achieve with varying cache size. Figure 3a
shows the average stretch for increasing size dis-
tribution (when clients show a preference toward
smaller objects), whereas Figure 3b shows the
average stretch for decreasing size distribution
(when clients prefer larger objects). From Figure
3, we see that SliCache can reap significant per-
formance benefits with even very small caches. It
shows 10- to 36-percent performance gains over
PIX (the second-best performing policy) for
increasing size distribution (see Figure 3a), and
stable 10-percent gains for decreasing size distri-
butions (see Figure 3b). Stretch decreases monot-
onically with increasing cache size for all policies
except Min-Saud. This happens because Min-
Saud purges some large but popular objects from
cache to accommodate smaller objects — an
inherent shortcoming of weighting by object size.
This effect has been observed for many Web
proxy-replacement policies.5

Performance for various skew values. Our next
experiment targeted the policies’ performance for
varying degrees of access skew. Figure 4 presents
the results obtained as the Zipfian distribution’s θ
parameter varies from 0.1 (almost uniform) to 1
(highly skewed). This figure shows results analo-

IEEE INTERNET COMPUTING www.computer.org/internet/ MAY • JUNE 2004 43

Web Caching

Figure 4. Average stretch versus Zipfian skew. As the skew increases
(such that fewer objects are responsible for greater percentage of
access), all policies achieve lower average stretch. The results show that
SliCache is the clear winner, especially for low and moderate skew.

50

100

150

200

250

300

350

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A
ve

ra
ge

 s
tr

et
ch

Skew

SliCache
LRU

LRU-k
Pix

Min-Saud

gous to those we obtained for various cache sizes:
SliCache performs considerably better than its
competitors. Indeed, it shows gains of more than
25 percent for small skew values and more than 10

percent for larger values. For low skew values (0.5
or less), the Min-Saud performs better than PIX;
for larger skew values, PIX does better.

Performance for heterogeneous clients. Figure 5
shows the results for testing the policies with non-
homogeneous clients and increasing size distribu-
tion. For this experiment, we considered three
groups, containing the same number of clients. The
first group follows the increasing size distribution;
thus, its most preferred objects are in the first
region; the second group shows a preference shift-
ed at RNG/3, relative to the first group; the third
group shows a preference shifted at RNG/3, rela-
tive to the second group.

Because the first group of clients follows the
increasing size distribution, its most popular items
are in region 1, followed by those in region 2, and
so on. Therefore, the most popular items for the
j-th group (2 ≤ j ≤ 3) are those in region (j
– 1)*RNG/3, followed by the items in region (j
– 1)*RNG/3 + 1, and so on (where RNG denotes
the total number of disjoint collections of database
objects, as defined earlier).

Because we considered an increasing size distri-
bution, for which the first of a total of RNG disjoint
contains smaller objects, it is obvious that the first
group of clients shows a preference for small
objects; the third group is biased toward large
objects, and the second group shows a preference
for medium-sized objects. We observe that there is a
wider performance gap for moderate and high skew
values between SliCache and the second-best per-
forming policy (the Min-Saud for low skew and PIX
for high skew values) in this case than there was
with homogeneous clients. We expected this
because the existence of heterogeneous clients caus-
es an increase in the number of popular objects,
which in turn affects the broadcast schedule’s com-
position and stability. Unlike Min-Saud and PIX,
SliCache caches the per-client popular objects rather
than striving to predict the broadcast schedule.

Performance for varying server schedules. We also
ran tests using the policies with a server with vary-
ing schedule, homogeneous clients, and moderate
access skew (0.55). The server switched between
the R × W and most requests first (MRF) scheduling
algorithms after every λ requests. Figure 6 shows
the performance results for different values of λ,
illustrating the vulnerability of PIX and Min-Saud
to the change of the scheduling policy, as well as
SliCache’s insensitivity to this change. LRU and

44 MAY • JUNE 2004 www.computer.org/internet/ IEEE INTERNET COMPUTING

Data Dissemination on the Web

Figure 6. Average stretch versus number of serviced requests before
broadcast schedule changes. The server switches between R × W
and MRF schedules, thus making the prediction of an object's
broadcast frequency quite difficult, affecting the policies that rely on
such predictions.

100

150

200

250

300

350

100 200 300 400 500 600 700 800 900 1,000

A
ve

ra
ge

 s
tr

et
ch

Schedule-change requests

SliCache
LRU

LRU-k
Pix

Min-Saud

Figure 5. Average stretch versus access skew for heterogeneous
clients. The performance gap between SliCache and its competitors
widens, especially for moderate and high skew values, compared to
their performance with homogeneous clients. The existence of
heterogeneous clients causes an increase in the number of popular
objects, which in turn affects the broadcast schedule's composition
and stability.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Skew

50

100

150

200

250

300

350

400
A

ve
ra

ge
 s

tr
et

ch

SliCache
LRU

LRU-k
Pix

Min-Saud

IEEE INTERNET COMPUTING www.computer.org/internet/ MAY • JUNE 2004 45

Web Caching

LRU-k showed the worst performance for larger λ
values because these policies quickly purge infre-
quently accessed objects from cache. Adding to
their problems, MRF broadcasts the infrequently
accessed objects rarely, thus degrading the perfor-
mance of these policies.

Conclusions
In this article, we did not consider integrating
cache-coherency issues into our caching policy.
Yet, our unmodified policy can be effectively
combined with a strong cache-consistency tech-
nique, such as invalidation reports,6 in which the
server periodically sends out lists of modified
objects and the cache never serves an object
without reading the invalidation report first.
Alternatively, the cache could employ proactive
mechanisms such as prefetching.7

In the future, we plan to investigate how to
exploit information, such as time-to-live, that is
associated with each object. We would like to inte-
grate this into SliCache’s replacement decisions in
order to achieve weak cache consistency.

Acknowledgments
This research was funded through the bilateral program of sci-

entific cooperation between Greece and Turkey (Γ.Γ.Ε.Τ. and

from TUBITAK grant number 102E021).

References

1. S. Acharya et al., “Broadcast Disks: Data Management for

Asymmetric Communications Environments,” Proc. ACM

SIGMOD Int’l Conf. Management of Data, ACM Press,

1995, pp. 199–210.

2. J. Xu et al., “Performance Evaluation of an Optimal Cache

Replacement Policy for Wireless Data Dissemination,” IEEE

Trans. Knowledge and Data Eng., vol. 16, no. 1, 2004, pp.

125–139.

3. D. Aksoy and M. Franklin, “R × W: A Scheduling Approach

for Large-Scale On-Demand Data Broadcast,” IEEE/ACM

Trans. Networking, vol. 7, no. 6, 1999, pp. 846–860.

4. S. Acharya and S. Muthukrishnan, “Scheduling On-

Demand Broadcasts: New Metrics and Algorithms,” Proc.

IEEE/ACM Conf. Mobile Computing (MobiCom ’98), ACM

Press, 1998, pp. 43–54.

5. D. Katsaros and Y. Manolopoulos, “Caching in Web Mem-

ory Hierarchies,” Proc. Symp. Applied Computing (SAC

’04), ACM Press, 2004, pp. 1109–1113.

6. G. Cao, “A Scalable Low-Latency Cache Invalidation Strat-

egy for Mobile Environments,” IEEE Trans. Knowledge and

Data Eng., vol. 15, no. 5, 2003, pp. 1251–1265.

7. A. Nanopoulos, D. Katsaros, and Y. Manolopoulos, “A Data

Mining Algorithm for Generalized Web Prefetching,” IEEE

Trans. Knowledge and Data Eng., vol. 15, no. 5, 2003, pp.

1155–1169.

Dimitrios Katsaros is a PhD candidate in computer science at

Aristotle University, Greece. His research interests include

caching, replication, prefetching, and content delivery over

the Internet, data management and delivery for mobile and

pervasive computing, and data mining. Katsaros received

a BSc in Informatics from Aristotle University. He is co-

editor of Wireless Information Highways (Idea Inc., to be

published in 2005). Contact him at dkatsaro@csd.auth.gr.

Yannis Manolopoulos is a professor in the Department of Infor-

matics at Aristotle University. His research interests include

access methods and query processing for databases, data

mining, and performance evaluation of storage subsystems.

Manolopoulos received both a BEng in electrical engineer-

ing and a PhD in computer engineering from Aristotle Uni-

versity. He has published more than 140 papers in refereed

scientific journals and conference proceedings. He is vice-

chair of the Greek Computer Society as well as a member

of the IEEE and the ACM. Contact him at manolopo@

skyblue.csd.auth.gr.

January/February
E-Voting

March/April
Software Susceptibility

May/June
Making Wireless Work

July/August
Attacking Systems

September/October
Security & Usability

November/December
Reliability/Dependability
Aspects of Critical Systems

IEEE Security & Privacy 2004 Editorial Calendar

www.computer.org/security/author.htm

