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Abstract—Clustering of Vanets is a technique for grouping
nodes in geographical vicinity together, making the network more
robust and scalable. Clustering of vehicles that is based on virtual
forces has been recently introduced for highways. We propose
a new algorithm, called Virtual Forces Vehicular Clustering
(V FV C), to create stable clusters in Urban environments where
mobility patterns of vehicles is more spatial. The algorithm
uses combined metrics produced by vehicle’s position, geometry,
relative velocity and vehicle’s lane in order to assign virtual
forces among them and create clusters. The performance of the
proposed algorithm is examined against two baseline algorithms
and Spring clustering (Sp − Cl). Results obtained show that
V FV C performs better with a significant increase in cluster
stability.

I. INTRODUCTION

In cluster-based routing protocols vehicles near to each other

form a cluster. Each cluster has one cluster-head, which is

responsible for intra and inter-cluster management functions.

Intracluster nodes communicate with each other using direct

links, whereas inter-cluster communication is performed via

clusterheaders. In cluster based routing protocols the formation

of clusters and the selection of the cluster-head is an important

issue. In VANET due to high mobility dynamic cluster for-

mation is a towering process. Many clustering techniques for

VANETS have been developed lately [1], [2], [3], [4], [5]. The

cluster based methods are divided in five major categories. The

methods that are focused in Urban environments, those that

are suitable for a VANET environment on highways, methods

that combine V2V and V2I communication and the two-tier

architectures. One other category of clustering methods may

be those that were initially produced for Manets can be used

in Vanets with some modifications.

A well-known mobility-based clustering technique is

Mobic [6], which is an extension of the Lowest − ID
algorithm [7]. In Lowest − ID, each node is assigned a

unique ID, and the node with the Lowest−ID in its two-hop

neighborhood is elected to be the cluster head. This scheme

favors nodes with lower identifiers to become CHs without

taking in mind mobility patterns of the nodes. In Mobic,
an aggregate local mobility metric is the basis for cluster

formation instead of node ID. The node with the smallest

variance of relative mobility to its neighbors is elected as the

cluster head.
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One of the major challenges in designing a vehicular net-

work is the system scalability. The vehicular network should

function in parameters for both low and high node density,

regardless of the topology i.e. metropolitan, highway etc.

Effective grouping of nodes in is achieved by applying cluster-

ing algorithms, built around the exchange of mobility context

information between neighboring nodes. This information the

most of the times is incorporated in the beacon messages.

In Urban environments where the mobility patterns of the

vehicle is more chaotic the clustering techniques that are

developed incorporate more complex metrics in order to create

stable clusters [8], [9], [10]. Affinity propagation is an algo-

rithm for image processing, and APROV E has proved that its

distributed case can be utilized for VANETs. APROV E [8]

distributively elects clusterheads by using affinity propagation

from a communications perspective. Density-based clustering

is based on a complex clustering metric which takes into

account the density of the connection graph, the link quality

and the road traffic conditions [9].

In [10] the proposed algorithm is based on the assumption

that each vehicle knows its exact lane on the road via a

lane detection system and an in-depth digital street map that

includes lane information. The clusterhead is selected based

on the flow of the majority of traffic. A lane weight (LW)

metric is applied for each traffic flow (LT, RT and NT). The

method does’t take in mind future positions of vehicles in

order to create clusters and only the current absolute difference

of velocities is used in order to compute clusterhead level.

Also vehicles lane changes are not simulated, but vehicles

are assumed to follow a steady route. Lanes where are both

turning and non-turning are also neglected. The method is used

just before each intersection, since traffic is divided to flows

according to the lane they belong to and checks whether the

clusterhead stays the same just after the intersection and the

results are not simulated on the total length of the road.

In [3] Spring clustering (Sp − Cl) was introduced, an

algorithm performing cluster formation based on virtual forces

applied to vehicles. The forces are computed taking into

account accumulated metrics of the neighborhooding vehicles.

Spring clustering shows increased performance for highways

compared to Lowest−ID [7] and LPG [7], however CH se-

lection does not take into account critical vehicular parameters

like the lane the vehicle belongs to, or social characteristics

of the driver. These parameters are very important when

Urban environments are investigated. In order to improve the

grouping efficiency in such dynamic vehicular environments,

978-1-4673-5753-1/13/$31.00 ©2013 IEEE

IEEE International Conference on Communications 2013: IEEE ICC'13 - Workshop on Emerging Vehicular Networks: V2V/V2I and
Railroad Communications

494



characterized by frequent changes in direction, we propose a

new clustering algorithm Virtual Forces Vehicular Cluster-

ing (V FV C). This algorithm is an extension of the Spring

clustering algorithm proposed in [3], using a new complex

optimized selection metric for the selection of cluster-head

nodes based not only on current positions, future positions

and relative velocities of vehicles but also on the lane they

belong to.

The rest of the paper is organized as follows. In Section II,

the network model is briefly described, in order to understand

how vehicles are represented and how virtual forces are

applied between the nodes. In section III the procedure which

is used in order to assign electric load to vehicles according

to special characteristics they have is described. The results

of the simulations are presented in Section IV and finally, the

conclusions are listed in Section V.

A. Contributions

The present work presents a new clustering protocol for

VANETs. Several scenarios are investigated in a Urban envi-

ronment where traces are loaded by SUMO [11] with several

routing distributions.

The article makes the following contributions:

• A new distributed clustering method for Urban vehicular

environments, the V FV C, is described.

• V FV C incorporates current position of vehicles (Lane

detection) in order to assign virtual forces on the vehicles.

• V FV C exploits vehicle’s height in order to choose the

correct clusterhead.

• A performance evaluation of the proposed method against

two baseline methods and Spring clustering is conducted,

which attest the superiority of the new structure.

II. VIRTUAL FORCES APPLIED ON VEHICLES

Recently a clustering method with the use of virtual forces

was introduced [3]. The method creates stable clusters in a

highway. The basic idea lies in modeling vehicles as electri-

cally charged particles. Every node applies to its neighbors

a force Frel according to their distance and their relative

velocities. Vehicles that move to the same direction or towards

each other apply positive forces while vehicles moving away

apply negative forces. Components of the vector Frel along

the east-west Fx and north-south Fy axes are calculated.

In order to perform clustering nodes periodically broadcast

beacon messages. Each beacon message consists of node

Identifier (ID), node location, speed vector in terms of relative

motion across the axes of x and y (dx, dy), total force F , state

and time stamp. Each node i using the information of the

beacon messages calculates the pairwise relative force Frelij

for every neighbor applied to every axes j using the coulomb

law.

Frelijx = kijx
qiqj
r2ij

, Frelijy = kijy
qiqj
r2ij

(1)

where rij is the current distance among the nodes, kijx
(kijy) is a parameter indicating weather the force among the

nodes is positive or negative depending on whether the vehi-

cles are approaching or moving away along the corresponding

axis and qi and qj may represent a special role of a node in

terms of electric charge. The pairwise relative force Frelij for

every pair of nodes depends on the relative mobility Krelij ,

the current distance and parameters qi and qj which indicate

a special role for the vehicles.

III. VITRUAL FORCES VEHICLE CLUSTERING

In our proposed scheme V FV C, we extend the meaning

of special roles on vehicles used in Sp − Cl. The charge of

every vehicle, is proportional to many parameters that affect

its behavior in the network. All vehicles are assigned an initial

electric charge Q. Vehicles according to their status (e.g. lane

they belong to, car height, public transport etc.) are assigned

a different amount of load (Q(i)) at each time step.

The characteristics that give vehicles extra charge are:

• Vehicles that follow predefined routes like a bus (Qp)

• Tall vehicles like trucks (QT )

• Vehicles that follow non-turning lanes in a multi lane

main street (Figure 1) (Qd(t)).
• Vehicles that their driver behavior is statistically smooth

(Qb).

• Vehicles that based on historical data, mobility can be

predicted (Qh)

Clusterhead

Node turns 

New clusterhead

Node turns 

Reclustering
No Reclustering

Fig. 1. The correct choice of the clusterhead plays significant role.

The total charge Q(i) that is given to every vehicle at each

time step according to the parameters described above, is given

by equation 2. The only parameter that is dynamic is Qd(t)
since the vehicle as it moves along the street may change lanes

and follow turning or non turning lanes at different time steps.

Qi = Q ∗Qp ∗QT ∗Qd(t) ∗Qb ∗Qh (2)

In the simple scenario where all vehicles have the same

characteristics and direction is not taken in mind all vehicles

are equally charged

Qi = Q ∀i, time step (3)

and Virtual Forces Vehicular Clustering V FV C performs

like the original Sp− Cl.
Using equation 4 to compute the relative force between two

nodes, parameter qi is used as follows:

if kijx ≥ 0 then qi = 2 ∗Q(i), if kijx ≤ 0 then qi = Q(i)/2.
(4)
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In order to enhance the performance of the method in Urban

environments we incorporate in every beacon message one ad-

ditional byte of information about the lane the vehicle belongs

to. Positive forces applied to these nodes are strengthened

while negative are weakened, in order to facilitate this node to

become a clusterhead. The correct choice of the clusterhead

is very important for the stability of the method, the cluster

lifetime and the overhead involved in forming and maintaining

these clusters.

A. Direction matters, parameter Qd(t)

In urban environments where vehicles change directions

often, parameters concerning direction need to be taken in

mind in order to perform clustering. The V FV C method that

we propose uses parameter Qd(t) in order to favor vehicles

to become clusterheads according to the lane they belong to.

There are three main traffic flows at an intersection: Left Turn

(LT), Right Turn (RT), and No Turn (NT). The intersection

may have all three types of traffic flows or only some of them.

LT is applied to the leftmost lane(s) if it splits the traffic to

the left, RT is applied to the rightmost lane(s) if it splits the

traffic to right, while NT is applied to the lane(s) in the middle

if traffic goes straight.

In a multi-lane street vehicles that follow a non turning

lane are better candidates to become clustrheads since they are

going to stay longer on the street. If a vehicle that is going to

leave the street soon, is elected as a clusterhead then major re-

clustering is going to take place when it turns to another road

segment, since it leaves all of its members orphans. In case

a member node i leaves the street in order to follow another

edge of the network, only this vehicle tries to find a nearby

cluster to enter. Charges are assigned to cars according to the

lane they belong according to the following rules.

• If the car follows a non turning lane then Qd(t)=2

• If the car follows a turning lane then Qd(t)=1

• If lane the car belongs to is going straight or turns then

the Qd(t)=1.5

In most of the cases this method increases the performance

of spring clustering since expect from the most stable node in

terms of relative mobility and velocity also a sense of future

direction is used in order to perform clustering.

B. Lane Detection

Virtual Forces Vehicular clustering is based on the assump-

tion that each vehicle knows its exact lane on the road via

a lane detection system and a digital street map [12]that

includes lane information for every road segment. Localization

of vehicles in mainly conducted through GPS either as a

standalone system or combined with a wheel odometer [13]

for better detection of lane changes.

Also a beacon network using infrastructure to triangulate

vehicle position can be used [14]. Other algorithms do not use

GPS, and instead use techniques such as vision [15], LIDAR

(Light Detection and Ranging) [16] etc. In case a vehicle isn’t

equipped with any localization mechanism, relative positions

of its one hop neighbors could be used in order to detect its

lane with a good precision.

IV. SIMULATION AND PERFORMANCE EVALUATION

Our proposed clusterhead selection algorithm was evaluated

through detailed simulation on an urban environment. We

simulated an area from city of Volos in Greece that is shown

in figure 2 and is 2km x 600m.

Fig. 2. Urban area of Volos

After aggregating the road segments that have the same

attitudes we have simulated the area in SUMO as shown in

figure 3

Fig. 3. Simulated Urban area of Volos

The area consists of thirteen intersections. Only intersec-

tions 5 and 8 (see figure 3) split the traffic of the main street

of interest. The intersections split the traffic into three different

directions. The first intersection has four lanes, dividing the

traffic into two directions: one lane to the right (TR) and three

lanes going straight (NT). The second intersection has three

lanes, dividing the traffic into two directions: one lane to the

left (TL) and two lanes going straight. We focused only on

one traffic direction.

Vehicles follow three different route distribution according

to table I. These distributions are used in order to favor

vehicles follow the main street or turn in the intersections in

a probabilistic way and not follow deterministic routes. The

Route Intersection 5 Intersection 8

NT TR NT TL

1 80% 20 % 90% 10%

2 80% 20 % 10% 90%

3 20% 80 % 50% 50%

TABLE I
ROUTE DISTRIBUTIONS

vehicle type ratio used for this simulation was 15% trucks and

85% sedans. We inject vehicles on the road and for the first

110 seconds of simulation time we use a traffic light in the

beginning of the area of interest. A traffic light is used in order

to have all vehicles injected as a group in the area. We follow

them until they leave the straight section of the road turning

left or right. In that way we are focusing on what happens

on a central road, where cars enter and leave it all the time,
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if we favor cars that follow the non turning lane to become

clusterhead. The parameters of V FV C used in the simulation

scenarios are listed in table II.

V FV C parameter Simulated Parameter value

Predefined routes No 1 (default)

V ehicle′s Height Yes 2(Tall), 1(Short)

V ehicle′s Lane Yes 2(NTL), 1.5 (TL & NTL), 1(TL)

Driver behavior No 1 (default)

Mobility prediction No 1 (default)

TABLE II
PARAMETERS OF VIRTUAL FORCES VEHICULAR CLUSTERING.

The traffic simulation is conducted with SUMO [11] and

the trace files are injected to our custom simulator in order

to perform clustering. We ran 10 different runs for each

scenario of different communication ranges and speed limits.

The vehicles were given different maximum speeds to provide

a realistic highway scenario. Random maximum speeds were

assigned to the different vehicles by providing SUMO with a

probability distribution input.

Scenario Transmission Range Max Speed limit

1 130 m 80 - 36 Km/h

2 200 m 80 - 36 Km/h

3 250 m 80 - 36 Km/h

4 300 m 80 - 36 Km/h

TABLE III
SCENARIOS TESTED DURING THE SIMULATION.

All nodes are equipped with GPS receivers and On Board

Units (OBU). Location information of all vehicles/nodes,

needed for the clustering algorithm is collected with the help

of GPS receivers. The only communications paths available are

via the ad-hoc network and there is no other communication

infrastructure. The power of the antenna is Ptx = 18dBm and

the communication frequency f is 5.9 Ghz.

The reliable communication range of the vehicles is cal-

culated according to Table IV. The reliable communication

range is calculated for every pair of nodes at every instance

based on the diffraction caused by obstructing vehicles [17].

In our simulations, we use a minimum sensitivity (Pth) of -69

dBm to -85 db which gives a transmission range of 130 to

300 meters.

Data Rate (Mb/sec) Minimum Sensitivity(dBm)

3 -85

4.5 -84

6 -82

9 -80

12 -77

18 -70

24 -69

27 -67

TABLE IV
MINIMUM SENSITIVITY IN RECEIVER ANTENNA ACCORDING TO DATA

RATE.

In order to evaluate the stability of the algorithm, we mea-

sure the stability of the cluster configuration against vehicle’s

mobility. In a high dynamic VANET, nodes keep joining

and leaving clusters along their travel route. Good clustering

algorithms should be designed to minimize the number of

cluster changes of the vehicle by minimizing reclustering. This

transitions among clusters are measured in order to evaluate

the performance of the algorithm.

The basic transition events the vehicle encounters during its

lifetime:

• A vehicle leaves its cluster and forms a new one (becomes

a clusterhead).

• A vehicle leaves its cluster and joins a nearby cluster or

becomes free.

• A cluster-head merges with a nearby cluster.

We compare the average transition events of the vehicles

for the Virtual Forces Vehicular clustering (DFV C), Sp−Cl
[3],Lowest− ID [7] and Mobic [6] methods when different

transmission ranges are used. From Figure 4, we can see the

average cluster lifetime is bigger compared to that produced

by the Sp − Cl, Lowest − ID and Mobic methods. The

average clusterhead duration is the average length of time that

a node remains a clusterhead, once it has been elected. Long

clusterhead duration is important for MAC schemes where the

clusterhead is the central controller and scheduler. Frequent

changes to the clusterhead will degrade the performance of

these cluster-based MAC schemes.
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Fig. 4. Average cluster lifetime vs transmission range

In this simulation we counted the new clusters which

are added to the system. To effectively decrease network

contention, fewer clusters is desirable. Typically, clustering

algorithms strive to have only one clusterhead within a given

broadcast range. Figure 5 shows that the total number of

clusters created by V FV C is always smaller compared to that

produced by the other methods and this number decreases as

the transmission range increases. The number of clusters is

decreased compared to Sp − Cl due to the fact that except

current and future position and relative velocities among

vehicles, also direction expressed in terms of the street lane

occupied by the vehicle is used in order to select the more

stable clusterhead.

From Figure 6, we can see that the average transitions

produced by our V FV C technique is very small compared to

the other methods. The average rate of clusterhead change is

the overall average number of clusterhead changes per second.
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The more clusters that are present, the greater the number

of clusterhead changes; therefore this metric conveniently

considers both clusterhead duration and the number of clusters

formed. Similar figures were produced for different speed

limits.
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The results clearly indicate that favoring vehicles that follow

non turning lanes has a significant impact on the formation of

clusters in a typical VANET clustering urban scenario where

a major city area is simulated.

V. CONCLUSIONS - FUTURE WORK

Clustering can provide large-scale Vanets with a hierarchical

network structure to facilitate routing operations. Virtual forces

which are applied to vehicles from their one hop neighbors

reflect the ratio of divergence or convergence among them.

We proposed a clustering solution with combined metrics such

as vehicle geometry, current and future distance among the

vehicle, relative velocities and current lane of vehicles in order

to make clustering more stable in urban environments.

The results of simulations conducted show that V FV C
algorithm outperforms the other investigated methods, in

terms rate of cluster-head changes (lower), total number of

clusters (lower), average cluster lifetime(higher), translated in

increased cluster stability, lower percentage of orphan nodes

and larger cluster sizes. The stable clusters created by V FV C
can be used as a base so typical VANET routing algorithms

can be applied for intra-cluster routing.

More sophisticated approaches where the future direction

of the vehicles according to the drivers behavior are needed

in order to further cope with temporal mobility patterns that

appear in urban environments. A research on clustering solu-

tion that exploits sociological patterns of vehicular movement

is conducted by our group, based on our previous work [18]
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