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A hybrid of node degree and k-shell index 
is more effective at identifying influen-
tial spreaders and has less computational 
overhead than either of these traditional 
measures.

W ith the unprecedented growth during the 
past decade of different types of social and 
enterprise networks, alongside naturally 
occurring networks in human communi-

ties, society is on the verge of becoming “fully networked.” 
Recent advances in information and communica-

tions technologies, coupled with the ability to create and 
store a vast amount of data on various aspects of human 
behavior, have made it possible to analyze complex net-
works. Studies range from purely graph-theoretic aspects 
(size and strength of communities, robustness to attacks, 
growth models, node connectivity, and so on), to more  
social-theoretic aspects (for example, homophily and 
rumor spreading). This research has given rise to compu-
tational social science,1 a new field that leverages the ability 
to collect and analyze data to reveal hidden patterns in in-
dividual and group activities.

Insights into complex networks’ structural and topo-
logical properties have informed work in numerous areas 
including search engine technology,2 the development of 
ad hoc network protocols,3 and detecting and containing 

disease outbreaks.4 Security researchers have likewise 
used complex network analysis to study terrorist net-
works,5 virus propagation over computer networks, and 
resistance to cyberattacks. Such analyses typically apply 
graph theory and involve centrality measures, shortest-
path algorithms, degree distributions, and so on.

Here, we focus on the problem of influential spreaders—
nodes in complex networks that can spread a message 
rapidly among other nodes. Early detection of such entities 
can help security technologists prevent extended damage 
to networks against malware or, in the case of terrorist net-
works, identify the most important malefactors.

To identify influential spreaders, researchers tradi-
tionally have relied on the k-shell index,6 a degree-based 
measure of a node’s “coreness.” However, the significant 
computational overhead of this index makes it inappropri-
ate for analyzing dynamic networks. 

We propose an alternative measure, the μ-power 
community index, that is an amalgam of coreness and be-
tweenness centrality; μ-PCI is calculated in a completely 
localized manner and thus suitable for any kind of network 
irrespective of its size or dynamicity.3 An experimental 
evaluation of the two values, along with a baseline mea-
sure based solely on node degree, demonstrates μ-PCI’s 
superiority in detecting influential spreaders. 

MOTIVATION
Consider an example in which an attacker installs a 

virus on a host mobile device with the intention of ex-
ploiting the host’s connections to spread the malware 



 April 2013 25

and ultimately infect as many other devices as possible. 
Assume that all devices comprise a single network with 
common administration. Upon detecting the malware, 
the administrator immediately takes action to limit its 
propagation. Possible measures include installing more 
effective antivirus software to selected devices, shutting 
these devices down, or disconnecting them from the rest 
of the network. 

Two well-known cases of malware that exploit 
mobile devices’ network connections are the Cabir and  
Commwarrior-A worms. The former spreads through Blue-
tooth connections to other Bluetooth-enabled devices that 
it can find. The latter was the first worm to propagate via 
the Multimedia Messaging Service; it searches through a 
user’s local address book for phone numbers and sends 
MMS messages containing infected files to other users.

Obviously, if the infected devices in our scenario are 
influential spreaders, they will impact a large part of the 
network. This leads to several questions: How fast will the 
virus spread? Is the infection rate different in different net-
work topologies? Does the percentage of infected nodes 
in the network depend on the node(s) where the infection 
originated? Do multiple infection starting points produce 
a substantially broader infection area? If so, what does this 
depend on? Which nodes should the administrator discon-
nect to stop the propagation?

Researchers who have investigated such questions 
found that not all nodes in a complex network have the 
same potential to propagate a message efficiently.6,7 Ex-
planations for this behavior range from a network’s 
topological characteristics at global scale—for example, 
power-law degree connectivity—to individual nodes’ con-
nectivity patterns. 

IDENTIFYING INFLUENTIAL SPREADERS
Most studies of influential spreaders have focused on 

their linkage with other nodes. The problem has not been 
described formally but is similar to two others: detecting a 
network’s central nodes and selecting the set of nodes that 
maximize the spread of infection.

Identifying the central nodes in a complex network 
usually relies on graph-theoretic concepts of between-
ness centrality. Such measures are generally based on a 
node’s degree or on its geodesic distance to other nodes.8 
The former category includes degree centrality, spec-
tral centrality, and coreness, whereas the latter includes 
closeness, shortest-path, and bridging centrality. Degree-
based centrality measures consider a node prominent if its 
connections make it visible to the network’s other nodes. 
Intuitively, a node is prominent if it is adjacent to many 
other prominent nodes. The latter family of centrality mea-
sures exploits the shortest path between nodes.

The spread maximization problem has been proved to 
be NP-hard in threshold networks,9 and researchers have 

proposed several greedy algorithms to solve it—for exam-
ple, there are simple and efficient algorithms that adopt 
the voter model.

Recent studies of social networks have considered other 
node features besides connectivity such as age, gender, and 
marital status.10 Another feature is trustworthiness, which 
can affect a decision to follow a link to malware. Examples 
of malware that exploited trust to spread across a social 
network include the Skype and Koobface worms.

BALANCING BETWEENNESS AND CORENESS
Maksim Kitsak and his colleagues found that the degree 

of a node is not a good indicator of its ability to spread a 
message to a sufficiently large part of the network.6 They 
reported that measures based on betweenness centrality 
are distorted by the degree-1 node, which increases the 
centrality index of the sole node connected to them. 

Our own research found that exploiting betweenness 
centrality has several disadvantages for disseminating 

messages in wireless ad hoc networks.3 Relying on a 
degree-1 node results in overestimating the spreading ca-
pabilities of a node connected to it. Moreover, based on a 
detailed investigation of the spreading capabilities of high-
degree nodes in various complex networks, we found that 
high-degree nodes are indeed often good spreaders.

Kitsak’s team argued that the node’s position in a k-shell 
decomposition of the network’s graph is a better way of 
quantifying influential spreaders, and went on to verify 
this hypothesis in the context of disease propagation.6 
However, subsequent research proved that a node’s spread-
ing capabilities in the context of rumor spreading do not 
depend on its k-core index.11 

As the “K-Shell Decomposition” sidebar explains, this 
approach has two other major shortcomings. First, it has 
significant computational overhead, rendering it unsuit-
able for dynamic networks. Second, it is impossible to 
guarantee a monotonic relationship between the k-shell 
index and a node’s spreading capability, which causes 
major problems when there are not enough resources to 
expend on node vaccination. 

We have developed a method that quantifies spread-
ing capabilities in a completely localized manner, making 
it suitable for any kind of network, irrespective of size or 
dynamicity.3 This metric, μ-PCI, balances the principles 
of betweenness centrality—it considers nodes that lie on 
many communicating paths between pairs of nodes—and 
the transitive network density implied by the coreness 

Exploiting betweenness centrality has 
several disadvantages for disseminating 
messages in wireless ad hoc networks.
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measure. The metric is computed as follows: the μ-PCI of a 
node v is equal to k, such that there are up to μ × k nodes 
in the μ-hop neighborhood of v with degree greater than or 
equal to k, and the rest of the nodes in that neighborhood 
have a degree less than or equal to k. The goal is to detect 
nodes located in dense areas of the network and thus likely 
influential spreaders.

PERFORMANCE EVALUATION
To evaluate our technique’s accuracy, we compared it 

to k-shell decomposition and a baseline measure based 
solely on the node degree on a large number of complex 
networks. Here, we present the most significant find-
ings from ca-CondMat and ca-AstroPh—two well-known 
collaboration networks from the e-print arXiv cov-
ering condensed matter physics and astrophysics, 

respectively—from the Stanford Network Analysis Plat-
form (http://snap.stanford.edu/data). Table 1 summarizes 
the networks’ main characteristics. 

We used the susceptible-infected-recovered model for 
an infection originating from both a single spreader and 
multiple spreaders to investigate the spreading process, 
as detailed in the “Infection Origins” sidebar. SIR models 
three possible states: 

 • the susceptible state S, in which the S nodes are vul-
nerable to infection;

 • the infected state I, in which the I nodes try to infect 
their susceptible neighbors and succeed with prob-
ability λ; and 

 • the recovered state R, in which nodes have recovered 
from infection and cannot be reinfected. 

We used relatively small values of λ to highlight the role of 
influential spreaders. 

We compared μ-PCI, k-shell decomposition, and the 
node degree method. For μ-PCI, we present only results 
for μ = 1. We obtained analogous results for μ = 2, but 
the method’s performance deteriorates substantially for  
μ > 2. We use km, ks, and k to represent the 1-PCI, k-shell 
index, and node degree values, respectively.

Similar to Kitsak and his colleagues,6 we used the aver-
age size of the network’s infected area as a performance 
measure. To quantify inf(s), the influence of a single 
spreader s, we computed the average size of the network 
infected with the (km, k) pair values. We averaged the 
extent of the infected network over all spreaders as follows:
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km,k is the set of all N

km,k spreaders with the 
same (km, k). We repeated the same process for k-shell 
decomposition. 

To obtain statistically unbiased results, we repeated the 
computation 1,000 times for each vertex of a graph for the 
single- and multiple-origin scenarios.

We found that 1-PCI exhibits steady and reliable be-
havior, overcoming the disadvantages of high-degree 
spreaders and of k-shell decomposition. Choosing high 
1-PCI nodes maximizes spreading influence, whereas se-
lecting the high-degree nodes or a random node from the 

K-Shell Decomposition

K -shell decomposition of a network graph is performed 
iteratively. The first step involves removing all degree-1 nodes, 

along with their link, and indexing these as k = 1. In the resulting 
graph, all nodes of degree 1 are also considered to have k = 1 and 
are again pruned. The process is repeated until there are no nodes 
of degree 1. Similarly, all nodes with i or fewer connections are 
iteratively removed; these nodes are indexed as k = i.

The k-shell method has two significant disadvantages for defin-
ing influential spreaders. 

First, although k-shell decomposition is an easy task from an 
algorithmic perspective, the measure itself is not localized; hence, 
determining the k-shell index requires both global knowledge of 
the network topology and multiple iterations. Although a recent 
attempt to implement k-shell decomposition in a distributed 
manner achieved an 80 percent reduction in execution time, the 
researchers offered no alternative to the algorithm’s iterative 
nature.1 Thus, this solution cannot be applied in contexts with real-
time requirements, such as security applications.

Second, k-shell decomposition frequently fails to establish a 
monotonic relation between k and the total infection area, which 
could have severe implications. An administrator who has limited 
time (m actions) or resources to shut down some uninfected 
machines would prefer to select those with the maximal spreading 
capabilities. If there were a strictly monotonic relation between k 
and the total infection area, the administrator would choose m 
nodes among those with the maximal k-shell indices. Unfortu-
nately, in many cases k-shell decomposition provides no such 
guarantees; quite often nodes with maximum k do not offer high 
enough spreading capabilities. Hence, a desirable property is for a 
measure to violate monotonicity as rarely as possible.

Reference
 1. A. Montresor, F. De Pellegrini, and D. Miorandi, “Distributed K-Core 

Decomposition,” IEEE Trans. Parallel and Distributed Systems,  
vol. 24, no. 2, 2013, pp. 288-300.

 Table 1. Complex network attributes.

Network Type
No. of 
nodes

No. of 
links

Infection 
probability (%)

ca-CondMat Sparse 23,133 186,936 8

ca-AstroPh Dense 18,772 396,160 4
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core shell either results in poor spreading or does not max-
imize influence.

Single original spreader
Our first experiment examined the three methods’ 

ability to select the most influential spreaders for a single-
origin process.

Figure 1 shows all nodes’ spreading capability in the 
ca-CondMat network according to their 1-PCIs and k-shell 
indices. The 1-PCI method results in a more monotonic dis-
tribution than k-shell decomposition, providing a clearer 
ranking of spreading capabilities. It converges to an ap-
proximately straight line, where maximum influence lies, 
more steeply than the k-shell method in all the studied 
cases. Choosing a spreader with, say, 1-PCI > 23, will yield 
the maximum influence, whereas choosing one from the 
core or from the high shells might not be optimal because 
in some cases nodes within the same shell have different 
spreading capabilities.

Figure 2 shows all nodes’ spreading capability in the 
ca-AstroPh network according to their 1-PCIs and k-shell 
indices versus the respective node’s degree. In particular, 
the plots depict the average size of the infected population 
INF

km,k for all spreaders with (1-PCI, degree) pair values. The 
k-shell index clearly fails to fulfill monotonicity in many 
cases. Also, 1-PCI has a better correlation with node degree.

This experiment confirmed the conclusion of Kitsak’s 
team that measures such as node degree cannot accu-
rately predict a network’s most influential spreaders.6 For a 
fixed degree equal to k, there is a wide spectrum of INF

km,k 

values, making the degree measure an ineffective solution, 

Infection Origins

o ur performance evaluation considered infections originating 
with both a single spreader and multiple spreaders.

SINGLE ORIGINAL SPREADER
All nodes are initially at the susceptible (S) state, except for one 

node, which is in the infected (I) state. The infected node tries to 
infect its susceptible neighbors with probability of success λ, and 
then changes to the recovered (R) state. All nodes in state I try to 
infect their susceptible neighbors, and the process repeats until 
there is no node in the I state.

MULTIPLE ORIGINAL SPREADERS
The number of initially infected nodes ranges from 0.5 to 4 per-

cent of the network’s total size.
μ-PCI and node degree methods

The malicious set of spreaders is empty in the first phase. We 
introduce the spreader with the highest value of each method to 
its respective set; we then select the spreader with the next highest 
value, which is not connected to the previous set. The process 
repeats until the initial infection percentage of the network is 
satisfied. 
K-shell decomposition

Because all spreaders in each shell are treated evenly, we start 
by introducing a randomly selected node to the set. We randomly 
select the next spreader from the remaining nodes of the core shell 
that are not directly connected to the previous set, and continue 
this process iteratively. If the initial infection percentage cannot be 
met from the core shell, we repeat the process on the shell immedi-
ately below it, and so on.
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Figure 1. Spreading capability of nodes in the ca-CondMat network with a single original spreader according to (a) 1-PCI and 
(b) k-shell index. There are nodes with high k-shell indices, some of which infect a large portion of the network, as well as 
nodes with the same k-shell index (16) that infect a significantly smaller part of the network. On the other hand, only nodes 
with very small 1-PCI exhibit such behavior.
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especially in cases where the objective is to select a very 
small number of spreaders. This occurs because a high-
degree node might be located in a sparse neighborhood.

The k-shell index depends less on node degree when 
moving to higher shells, but the best spreaders are often 
scattered across numerous shells, thus violating monoto-
nicity. Most nodes have a k-shell index equal to 48, which 
is particularly high; their spreading capability is similar to 
that of nodes with a k-shell value less than 30. 

For a fixed 1-PCI, the infection percentage is approxi-
mately the same and independent of node degree, making 
high 1-PCI nodes the best choice in single-origin spreading 
processes. The 1-PCI measure groups spreaders according 
to their spreading capabilities: lower 1-PCI values corre-
spond to poor spreaders, whereas high values indicate the 
most influential ones. 

As a node’s 1-PCI increases, its spreading influence also 
appears to increase. Consider, for example, the results ob-
tained from the ca-AstroPh network shown in Figure 2b. 
Moving to higher shells—starting at, say, ks > 34—spread-
ing influence seems to constantly increase. However, this 

increase stops at ks = 48, where the infection decreases 
drastically. The 1-PCI analysis does not elicit such behav-
ior, especially when close to maximum influence. As 1-PCI 
values increase, influence also continuously increases 
until maximum infection is reached.

We computed the number of influential spreaders 
that can achieve the maximum infection (with 1 per-
cent deviation) for the two networks described here 
along with the soc-Slashdoc0811 network. As Table 2 
shows, network size and topology impact the number 

(a) (b)

 1

 10

 100

1,000

0  20  40  60  80  100  120

No
de

 de
gr

ee

1-PCI

ca-AstroPh

0

5

10

15

20

25

30

 1

 10

 100

1,000

No
de

 de
gr

ee

0

5

10

15

20

25

30

0  10  20  30  40  50  60
K-shell index

ca-AstroPh

Figure 2. Spreading capability of nodes in the ca-AstroPh network with a single original spreader according to (a) 1-PCI 
and (b) k-shell index versus node degree. The k-shell index fails to fulfill monotonicity in many cases, and 1-PCI has a better 
correlation with node degree.
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Figure 3. Spreading capability of nodes in the ca-AstroPh 
network with multiple original spreaders according to node 
degree, 1-PCI, and k-shell index. The k-shell index is the 
least effective measure. Node degree is the most effective 
measure, closely followed by 1-PCI, but the discrepancy 
between these values quickly diminishes as the number of 
multiple original spreaders grows. 

Table 2. Number of influential spreaders that can 
maximize infection in three networks.

Network
Size 

(nodes)
Density 
(edges)

Infected 
area (%)

No. of 
influential 
spreaders

soc-Slashdoc0811 77,360 905,468 16.5 1,788

ca-CondMat 23,133 186,936 1.9 127

ca-AstroPh 18,772 396,160 26.5 477
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of influential spreaders. We observed no increasing or 
decreasing relation between the number of influential 
spreaders and network size—the key factor is the pat-
tern of node connections.

Multiple original spreaders
Our second experiment examined the three meth-

ods’ ability to select the most influential spreaders for 
a multiple-origin process. To maximize the infected 
area, the original spreaders were not linked. If selected 
spreaders were connected, the infected region would 
be smaller due to the overlap of neighboring spreaders’ 
“influence regions.”6

Figure 3 shows all nodes’ spreading capability in the 
ca-AstroPh network according to their degree, 1-PCI, 
and k-shell index. The x-axis indicates the percentage of 
initially infected nodes, with λ at 2 percent. The results 
were similar for other networks. 

Although high 1-PCI nodes are the most influential 
spreaders in a single-origin process, all three measures 
are comparable in this case. The k-shell index is the least 
effective measure. Node degree is the most effective, 
closely followed by 1-PCI, but the discrepancy between 
these values quickly diminishes as the number of multiple 
original spreaders grows.

D iscovering the most influential spreaders is the 
key to immunizing complex, dynamic networks 
against cyberattacks and thereby limiting infection. 

Overall, μ-PCI, which can be considered a hybrid of node 
degree and k-shell index, is more effective at identifying 
influential spreaders and has less computational overhead 
than either of these traditional measures. Further work 
could include the use of control-theoretic techniques to 
improve results. 
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