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Abstract— Monitoring the state of communications in a
distributed multilayer network with differing node capabilities
requires the maintenance of a backbone which is a connected
edge dominating set. In this paper, we present distributed
algorithms that can efficiently create such multilayer resilient
connected edge-dominating sets. After establishing the com-
plexity of the problem and our proposed heuristics, we exper-
imentally compare their performance while varying multiple
characteristics of the underlying networks.

I. INTRODUCTION

The distributed nature of modern networks and the lim-
ited processing power of networked sensors and embedded
systems used in Internet of Things (IoT) applications has led
to new security vulnerabilities [1]. Intruders can inject mali-
cious communications between any two networked elements
without aiming to have the message propagated to any further
target. The increasing variety, capability, and complexity of
network elements has increased this risk. Furthermore, the
evolution of these networks leaves them vulnerable to errors
and compatibility issues when new elements are added to
the network. While these issues may be sensed by the com-
municating network elements, their limitations do not allow
them to compute remedies, necessitating communication to
elements with more processing power. In this work, we
present a framework for monitoring network failures using
connected edge dominating sets in multilayer networks, and
then we provide efficient distributed algorithms for their
computation.

Consider the case where we wish to be able to monitor all
the communication taking place among nodes of a wireless
ad hoc network such as the one shown in Fig. 1. It is assumed
that any pair of nodes can initiate an exchange of packets
and the routing may follow any path of the network, e.g.,
not only the shortest-path route between the communicating
nodes. In principle, this task requires us to recognize a set
of edges (communication links) such that every other edge
is adjacent to at least one edge belonging to this set; then,
by placing monitoring devices at the endpoints of each edge
belonging to this set we can achieve our goal. Such a set
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of edges is termed an edge dominating set (EDS) in graph-
theoretic terms. Due to cost considerations, we are interested
in identifying such sets with minimum cardinality, i.e., we
seek minimum edge dominating sets (MEDS). However, as it
is often the case for ad hoc networks, the set of monitoring
devices must be able to output any intercepted informa-
tion; therefore the MEDS must be connected (MCEDS),
and, moreover, must be computed in a distributed fashion.
Looking at Fig. 1, we can confirm that the set of blue
edges constitutes a MCEDS, and also the set of green edges
constitutes a MCEDS.

The concept of network layers can capture the diversity in
the capabilities of network elements, as well as their differing
roles. For example, although traditional ad hoc networks
are treated as single layer networks, military tactical ad hoc
networks [2] are considered to be multilayer networks due to
the existence of different types of units (infantry, vehicles or
airborne units), where nodes belong to different layers, i.e.,
groups. For instance, in Fig. 1 the node set C1–C5 comprise
one layer and nodes S1–S10 comprise another layer.

Finding an MCEDS for multilayer networks is somewhat
more complicated than calculating MCEDS for single layer
networks, both for technical reasons (cf. Theorem 2), and for
application-specific reasons, e.g., robustness. Looking again
at the blue and green MCEDS’s in Fig. 1, we observe that
the green one includes two edges that connect the different
layers (inter-layer edges), whereas the blue only has one such
edge. Increasing the number of inter-layer edges can improve
the network’s resiliency to failures in any particular layer [2].
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Fig. 1. Two minimum connected edge dominating sets: the blue (with
circular marks) includes one inter-layer edge, and the green (with square
marks) includes two inter-layer edges.

In this article, we cast our monitoring problem for mul-
tilayer networks, which entailed finding an MCEDS in a
distributed manner containing many inter-layer edges, into
a new form of generic domination problems. We name
this problem the multi-colored minimum connected edge
dominating set problem (MCMCEDS), and we will describe
it here in terms of calculating the minimum multi-colored
edge dominating set. The framework and the algorithms
proposed can be used for efficiently detecting and avoiding
interference conditions in large wireless IoT networks, or
even in more specialized setting such as those enabling



dynamic frequency selection (DFS) where radar signals must
be detected and protected against interference from 5GHz
radios; dominating sets concepts have been used in the past
for monitoring problems [3], [4].

The contributions of the present paper are as follows:
• It introduces the novel problem of finding a (minimum)

connected edge dominating set in multilayer networks
with the additional goal of including many inter-layer
links into the EDS (§II). This problem extends ideas
related to those developed in [5].

• It analyzes its computational complexity (§III).
• It proposes three heuristic distributed algorithms for it

(§IV).
• It proves an analytic result that relates the cardinality of

an independent edge dominating to the cardinality of a
corresponding connected edge dominating set (§IV-B).

• It conducts a performance evaluation of the proposed
algorithms against two baseline competitors (§V).

We define the MCMCEDS problem in §II. We then present
results on the complexity of MCMCEDS computation in §III,
and discuss our approaches to computing heuristics and their
rationale §IV. We present extensive simulation results in §V.
We survey related work on §VI.

II. THE MCMCEDS PROBLEM

A. Edge domination in traditional settings

Firstly, we will provide some basic definitions on domi-
nating sets [3] before we formulate this article’s problem.

Definition 1: An edge dominating set EDS(G) of a net-
work (G,E) (G is the set of nodes, and E is the set of
edges) is any subset of E such that any edge e ∈ E is either
a member of EDS(G) (it is a dominating edge) or it has
one common endpoint with at least one dominating edge (it
is a dominated edge).
Let xe be an indicator variable representing whether e ∈ E is
included in EDS(G). Therefore, Definition 1 is equivalent
to saying that for each e ∈ E: xe+

∑
e′∈N(e) xe′ ≥ 1, where

N(e) is the set of neighboring edges of edge e (i.e., those
with one common endpoint). Note that in the line-graph
L(G) of graph G, in which every edge is replaced with a
vertex and vice versa, and the incidence relationship between
edges and vertices is preserved [6], an edge dominating set
in G, EDS(G), is translated to a dominating set (DS).

Definition 2: An independent edge dominating set
IEDS(G) of a network (G,E) (also referred to as a
maximal matching [7]) is any edge dominating set of G
such that no two edge dominators share an endpoint.

Definition 3: A connected edge dominating set
CEDS(G) of a network (G,E) is any edge dominating set
of G such that the set of dominating edges along with their
endpoints comprise a connected network.
The line-graph (L(G)) preserves connectivity [6], so in
translation, CEDS(G) becomes a Connected Dominating
Set (CDS) of the line-graph.

Definition 4: A minimum connected edge dominating set
MCEDS(G) of a network (G,E) is any CEDS of G

with the additional property that it contains the least possible
number of dominating edges.

At this stage, the link between the CEDS and its equiva-
lent in the line-graph is broken: an MCEDS(G) will trans-
late to a CDS with the minimum number of nodes, and not
edges, in the line-graph. Therefore, the problems of finding
the Minimum Connected Dominating Set (MCDS) [8] and
the MCEDS are not linked in a straightforward manner. So
an MCDS in L(G) will be a CEDS in G, but there is no
guarantee that its cardinality will be minimal.

B. Edge domination in multi-layered network settings

Definition 5: A multi-layer network comprised of n layers
is a pair (GML, EML), where GML = {Gi, i = 1, . . . , n} is
a set of networks (Gi, Ei), as defined earlier, and EML =
{Ei,j ⊆ Gi ×Gj ; i, j ∈ {1, . . . , n}, i 6= j} is a set of inter-
layer edges.

Definition 6: A minimum connected edge dominating set
of a multi-layered network MCEDS(GML) includes the
minimum set of edges such that their induced subgraph is
connected and edges not in this set are adjacent to at least
one edge within it.

In Fig. 1, G1 = {Si, i = 1, . . . , 10}, G2 =
{Ci, i = 1, . . . , 5}, and EML is the set of all edges
connecting them e.g., 〈S1, C1〉.

Definition 7: An edge-multicolored multi-layer network
(see Fig. 2) is a multi-layer network with these two proper-
ties:

p-1) all edges e whose endpoints both belong to a single
(any) layer, i.e., e ∈ Ei,∀i ∈ {1, . . . , n} have the same
color (black). E.g., black edges in Fig. 2.

p-2) all edges l whose endpoints belong to different layers
i.e., l ∈ Ei,j ⊆ Gi × Gj , i, j ∈ {1, . . . , n}, i 6= j will
have the same color, which is different from the color of
edges c ∈ Ex,y ⊆ Gx ×Gy, x, y ∈ {1, . . . , n}, [x, y] 6=
[i, j]. E.g., red edges in Fig. 2.

L2

L3

L1

Fig. 2. A multicolored multi-layer network with 3 layers (L1, L2, L3).

Definition 8: A multi-colored minimum connected
edge dominating set of a multilayer network
MCMCEDS(GML) is an MCEDS(GML) with the
maximum number of colorful (i.e., non-black) edges.

Problem 1 (dist-MCMCEDS): We seek to find an
MCMCEDS(GML) for a multi-layer network GML in
a distributed fashion, i.e., having only knowledge of the
k-hop neighborhood around each node. Here, we set k = 2.

III. COMPLEXITY OF THE MCMCEDS PROBLEM

Theorem 1: The MCMCEDS problem is NP-hard.
Proof: Assume we have a single-layer graph G =

(V,E) and we seek to find its MEDS. Now, create a 2-
layer network (GML, EML), where GML = {Gi, i = 1, 2}



have the same vertices as V , and a set of inter-layer edges
EML = {Ei,j ⊆ Gi × Gj ; i, j ∈ {1, . . . , n}, i 6= j}
by assigning one edge in E to EML and the rest to E1,
and E2 uniformly at random. If MCMCEDS for such a
(GML, EML) was not NP-hard, we could use it at most
|E| times (varying the edge assigned to EML) to find a
solution to MCEDS, a known NP-complete problem [9,
p. 102, Lemma 4.4.3].

IV. HEURISTICS FOR THE MCMCEDS PROBLEM

Since our problem is NP-hard, we wish to design heuristic
algorithms that can encapsulate the idea of including as many
inter-layer edges as possible into the EDS. In our previous
work [2], [10] we have introduced the family of the Power
Community Index (PCI) centrality measures for multilayer
networks, namely mlPCI and clPCI, whose purpose is to
assign a value to each node which depicts its connectivity
both to its layer and to other layers. In [2] we used clPCI
and mlPCI for the purpose of establishing a backbone for
multilayer ad hoc networks based on the calculation of a
node dominating set. Note that a simple application of these
algorithms to create a connected node dominating set is
insufficient, as it may leave some edges undominated. We
will not repeat the definitions, but instead give the distributed
algorithms for the calculation of the edge dominating sets,
and calculate their computational complexities as a function
of ∆, the maximum node degree in the network.

A. PCI approaches

In Algorithm 1, lines (1)–(9) are distributed and executed
by every node u in order to select which of the edges incident
on it (i.e., on u) will be included in the IEDS. The selection
is based on such a multilayer centrality measure. Since the
centrality measure has been defined for nodes and not for
edges, we use the product ‘value’ of each edge’s end-nodes
to define the edge’s value. The fictitious operation of line (10)
unites every node’s selection in order to construct the final
IEDS. The proof of algorithm’s correctness, in the sense that
it constructs an IEDS is very similar to that reported in [11,
Theorem 4.2] and thus it will be omitted for all algorithms
presented.

Proposition 1: The computation complexity of IEDS is
O(∆2) in the worst case.

Proof: The worst case computation complexity of IEDS
selection is when a node u has ∆ neighbors and each one of
them has ∆ neighbors too. During the build-up of the edge
adjacency matrix, node u needs to compare its 1-hop and
2-hop neighbor set with ∆2 neighbors in the worst case, and
the neighbor set comparison has a O(∆) complexity. The
same computation cost applies to the population of the edge
adjacency matrix node with the weight value wedge

i,j of each
respective edge. The computation complexity of electing an
edge as a DS edge is O(∆2), as node u needs to compare
its 1-hop neighbor set with ∆ neighbors in the worst case,
and the neighbor set comparison has a O(∆) complexity.

The second algorithm, namely MLEDS1 (Algorithm 2),
is the first that computes a CEDS; it starts from an IEDS

Algorithm 1: IEDS
postcondition: Completed IEDS election process
remarks : multilayer network G=(V,E), Sedge

(u)
: edges incident to

u, M(u) / M(w
edge
i,j ) : True(T) / False(F) indicator

for node u / edge wedge
i,j being a DS node / edge.

1 Identification of 1-hop (N(u)) and 2-hop (N2(u)) neighborhood via
distributed beaconing and calculation of clPCI indexes of the nodes;

2 Build local edge adjacency matrix Emat
(u)

with N(u) & N2(u);
/* ∃ e(i,j) ∈ E ⇐⇒ i ∈ N(j) ∧ j ∈ N(i) */

3 Add weights wedge
i,j = clPCI(i) ∗ clPCI(j) to Emat

(u)
;

4 Build Sedge
(u)

= wedge
u,l1

, . . ., wedge
u,lm

| wedge
u,lk

∈ E, lk ∈ N(u) ∀k≤m;

5 if ∃ wedge
u,lk (1≤k≤m)

∈ Sedge
(u)

not attached to DS edge then
6 Select the edge with the largest weight and set M(u) = T;
7 M(wedge

u,lk (1≤k≤m)
) = T ; /* EDS election */

8 Announce status change;
9 end

10 Collect all edges (across the network) with a status=T;

and connects it by adding edges that are bounded by DS
nodes of the IEDS and 1-hop relay nodes of them (those with
the largest clPCI index) who collectively cover their 2-hop
neighborhood. Steps (1)–(14) are distributed and executed by
each node u. Since adding edges in a distributed manner may
result in redundant edge selection, MLEDS1 has a pruning
phase (line 11). Line 15 is fictitious in order to fulfill the
postcondition, i.e., it need not be run in practice.

Algorithm 2: MLEDS#1
precondition : Completed IEDS election process
postcondition: Completed MCEDS election process
remarks : R(u) : relay node set of node u.

1 If M(u) = F then Return; /* not a DS node */
2 repeat
3 Add in R(u) a node l ∈ N(u) with the largest clPCI index

that covers at least one new node in N2(u);
4 M(l) = T; M(wedge

u,l ) = T; /* CEDS process */
5 until each node in N2(u) is covered by node(s) in R(u)
6 Announce status change;
7 Build Sedge

(u) = wedge
u,l1

, . . . wedge
u,lm

| wedge
u,lk (1≤k≤m) ∈ E, lk ∈

N(u), M(lk) = T;
8 Sort Sedge

(u) in increasing order of the wedge weights.
9 repeat

10 if wedge
u,lk (1≤k≤m) is dominated by connected wedges ∈ Emat

(u)

with larger weight then
11 M(wedge

u,lk (1≤k≤m))=F ; /* EDS Pruning */
12 Announce status change;
13 end
14 until each wedge

u,lk (1≤k≤m) ∈ Sedge
(u) has been considered

15 Collect all edges (across the network) with a status=T;

Proposition 2: The computation complexity of MLEDS1
is O(∆3) in the worst case.

Proof: In order to connect the IEDS, each node u
needs to check the status of its 1-hop neighbor set, which
has a O(∆) complexity. The computation complexity of the
pruning phase is O(∆3), because a node u needs to calculate
the coverage capability of a connected graph composed of
both 1-hop and 2-hop neighbors in order to decide if it will
act as a DS node or not. Thus, each node u compares its
neighbor set with ∆2 neighbors in the worst case, and the
neighbor set comparison has a O(∆) complexity.



An improved version of the previous algorithm (MLEDS2)
applies the more sophisticated pruning technique developed
in [12] in order to reduce the size of the resulting connected
edge dominating set. Due to space constraints, we omit its
pseudocode and computational complexity here.

Finally, Algorithm 3 first creates a connected node domi-
nating set and then computes a CEDS through the addition
of edges. Note that for such a node dominating set, all
nodes are within one-hop of a selected node, so if we can
judiciously add such connecting edges (between selected and
non-selected nodes), we will have a CEDS. Steps (1)–(18)
are executed in a distributed fashion by every node u.

Proposition 3: The computation complexity of the relay
node set election process is O(∆3).

Proof: The prioritization phase involves neighbor sort-
ing based on clPCI value, which is a O(∆∗log ∆) operation.
The worst case construction phase results when a node u
has ∆ neighbors and each one of them contributes ∆ nodes
to the coverage of the 2-hop neighborhood of u. In this case,
node u needs to run once over its neighbor set of size O(∆)
and ‘erase’ those nodes of the 2-hop neighborhood of u
(which has maximum size O(∆2)) covered by the specific
neighbor; this operation costs O(∆3).

Proposition 4: The computation complexity of the prun-
ing phase is O(∆3).

Proof: A relay node u needs to check its 1-hop and
2-hop neighbors in order to decide if it will act as a relay
node or not. Thus, each relay node u compares its neighbor
set with ∆2 neighbors in the worst case, and the neighbor
set comparison has a O(∆) complexity.

Proposition 5: The computation complexity of transform-
ing the MCDS to MCEDS is O(∆4) in the worst case.

Proof: The worst case computation complexity of the
transformation process of the MCDS to MCEDS is when a
non-DS node u has ∆ non-DS neighbors and each one of
them has ∆ neighbors too. In such case node u needs to
compare its 1-hop with ∆ neighbors in the worst case, and
the neighbor set comparison has a O(∆) complexity.

B. On the size relationship between IEDS and CEDS

Here we establish the relationship between the cardinality
of an IEDS and the cardinality of its corresponding1 CEDS.2.

Theorem 2: Any IEDS of size |IEDS| can be turned into
a CEDS by adding 2×|IEDS| additional edges to the IEDS
in the worst case.

Proof: We provide the proof sketch. Firstly, we will
state a corollary that results immediately from the indepen-
dent edge domination property, and then we will define the
concept of neighboring dominators of an edge dominator ev .

Corollary 1: In any IEDS, the closest (in terms of hops)
edge dominator to any edge dominator can be found one or
two hops away, i.e., ≤ 2 other edges are located in between
these two edge dominators.

1I.e., when IEDS ⊂ CEDS.
2Note that the claims of the theorem do not imply the relationship between

the cardinality of the IEDS and that of the graph’s edge set.

Algorithm 3: MLEDS#3
postcondition: Completed MCEDS election process

1 Identification of 1-hop (N(u)) and 2-hop (N2(u))
neighborhood via distributed beaconing and calculation of
clPCI indexes of the nodes;

2 repeat
3 Add in R(u) a node l ∈ N(u) with the largest clPCI

index that covers at least one new node in N2(u);
4 until each node in N2(u) is covered by node(s) in R(u)
5 Announce R(u);
6 if selected as a relay node then
7 M(u) = T ; Announce status change;
8 Build Sconstrained

(u) = u1, u2, . . . , un | uk (1≤k≤n) ∈
N(u) ∧N2(u), M(uk (1≤k≤n)) = T ,
clPCI(u) < clPCI(uk (1≤k≤n));

9 if Sconstrained is subject to
N(u) ⊂ N(u1) ∪N(u2)... ∪N(un) and
u1, u2, ..., un form a connected graph then

10 M(u) = F ; Set M(wedge
i,j ) = F any edge wedge

i,j

incident to node u; /* CDS Pruning */
11 Announce status change; Return;
12 end
13 Build Sedge

(u) = wedge
u,l1

, wedge
u,l2

, . . . wedge
u,lm

|
wedge

u,lk (1≤k≤m) ∈ E, lk ∈ N(u), M(lk) = F;
14 if ∃ wedge

u,lk (1≤k≤m) ∈ Sedge
(u) adjacent to a non DS edge

and that edge is not incident to a DS node then
15 M(wedge

u,lk (1≤k≤m))=T; /* MCDS to MCEDS */
16 Announce status change;
17 end
18 end
19 Collect all edges (across the network) with a status=T;

Definition 9: A neighboring edge dominator eu of an
edge dominator ev is any edge dominator which is at most
two hops away from ev .

An edge dominator ev can have more than one neighboring
edge dominator, but the exact number depends on network
topology. Together, Corollary 1 and Definition 9 mean the
topology between an edge dominator and its neighboring
edge dominators must be one of the following:

C1 An edge dominator has at least one neighboring edge
dominator one hop away. (e.g., edge dominator 〈1, 2〉
is one hop away from 〈7, 9〉 in Fig. 3).

C2 An edge dominator has at least one neighboring dom-
inator two hops away, and no dominators in one
hop distance (edge dominator 〈1, 2〉 from 〈4, 5〉 in
Fig. 3(Left)).

2

3

4 5

6

7

891

Fig. 3. (LEFT) An IEDS (blue thick edges) which exhibits all possible
relative locations of neighboring edge dominators. For instance, edge
dominator 〈1, 2〉 is one hop away from 〈7, 9〉 and two hops away from
〈4, 5〉. (RIGHT) An IEDS (blue thick edges) which requires the maximum
number of edge dominatees that must become dominators in order to get a
CEDS. (Note that the graph extends infinitely to the left and to the right in
the same pattern.)



degree vs. (EDS size, # interlayer links)
deg MLEDS# 1 MLEDS# 2 MLEDS# 3 BASE IEDS
3 0.54 0.66 0.34 0.45 0.29 0.42 0.580.39 0.140.19
6 0.34 0.61 0.23 0.51 0.21 0.53 0.420.25 0.110.21

10 0.19 0.37 0.15 0.46 0.15 0.49 0.260.21 0.070.22
15 0.11 0.25 0.11 0.47 0.11 0.49 0.150.18 0.050.21
20 0.09 0.21 0.08 0.48 0.08 0.53 0.120.12 0.040.23

diameter vs. (EDS size, # interlayer links)
diam MLEDS# 1 MLEDS# 2 MLEDS# 3 BASE IEDS

3 0.21 0.39 0.21 0.48 0.16 0.51 0.250.29 0.080.21
5 0.32 0.54 0.32 0.47 0.20 0.50 0.360.33 0.100.20
8 0.33 0.57 0.33 0.45 0.21 0.47 0.390.38 0.100.20

12 0.46 0.64 0.46 0.43 0.25 0.44 0.510.41 0.120.19
17 0.55 0.66 0.55 0.45 0.32 0.42 0.620.42 0.150.20

TABLE I
COMPARISON OF PROPOSED ALGORITHMS TO A BASELINE ALGORITHM.

FOR EACH COMPETITOR: THE LEFT COLUMN IS THE PERCENTAGE OF

EDS SIZE W.R.T. NUMBER OF EDGES, AND THE RIGHT COLUMN IS THE

PERCENTAGE OF INTERLAYER EDGES W.R.T. EDS SIZE.

If [C1] holds for some dominator ev , then we need to
include one more edge dominatee into the EDS in order to
connect ev to its nearer neighboring dominator. If [C2] holds
for some dominator ev , then we need to include two more
edge dominatees into the EDS in order to connect ev to its
nearer neighboring dominator. Thus, in the worst case, for
every edge dominator, we need to include two more edges
into the EDS in order to make it a CEDS. The worst case
occurs for IEDS’s as shown in Fig. 3 (Right).

V. NUMERICAL RESULTS

We performed an evaluation of the algorithms in MAT-
LAB. Since there is no prior work on our topic, we use as
baseline algorithm (referred to as BASE) the very popular
one proposed in [13] for node dominating sets, which we
augment with a greedy heuristic to construct a connected
EDS. We have also developed a generator [10] to produce
multilayer networks. We use the size (in percentages) of
the resulting (connected) EDS as the performance measure.
The champion algorithm will be the one that calculates the
smallest size CEDS. The default value for average node
degree is set to 10, for network diameter it is set to 8, and for
the number of layers it is set to 4. Each figure encompasses
four sets of plots aligned vertically, corresponding to four
different settings for the number of nodes in each of the
layers.

In Table I we present the impact of average network
degree and diameter on the competitors’ EDS size for default
settings, and also on the number of interlayer links included
in the EDS as a resilience measure.

We can see that the proposed algorithms succeed in includ-
ing many interlayer edges in the final CEDS; almost half of
CEDS edges are interlayer ones. MLEDS3 in particular has
stable behavior with respect to changes in network degree or
diameter. On the other hand, BASE is the worst algorithm
from the perspective of EDS size and this is consistent across
all our experiments and therefore we refrain from presenting
its performance in the sequel.

Fig. 4. Impact of the average node degree on the size of CEDS.

Fig. 4 shows the performance of the algorithms as the
average degree varies between 3 and 20. The immediate
observation is that when the degree increases, the size of the
EDS decreases for all competitors, which is to be expected
given that in dense topologies a single edge can dominate
more edges. Also as expected are the observations that
larger networks have relatively larger EDS’s, as they must
be sparser given that the average degree is fixed, and that the
IEDS algorithm leads to the smallest EDS, as it does not have
to ensure connectivity. Among the algorithms that created
connected EDS, MLEDS3 is the best performing algorithm,
creating an EDS twice the size of that calculated by IEDS
which combined with Theorem 2 confirms that it is a good
solution to our problem.

Fig. 5. Impact of the network diameter on the size of CEDS.

Fig. 5 shows the performance of the algorithms as the
network diameter varies between 3 hops (so-called ‘bushy’
networks) to 17 hops (‘long and skinny’ topologies). As
expected, in ‘bushy’ topologies, the resulting EDS’s are
smaller, whereas in the ‘long and skinny’ topologies more
dominating edges are needed. As an analogy, in a star
network (a ‘bushy’ topology) a single edge can dominate all
others, whereas in a line topology with k connections, the
connected edge dominating set has cardinality k− 2. Again,
the best performing algorithm MLEDS3 is around 10% better
than the second best algorithm on average. The performance
gap reaches 25% for ‘longer and skinnier’ topologies.

Fig. 6 shows the performance of the algorithms as the
number of layers varies. The increase in the number of



Fig. 6. Impact of the number of layers on the size of CEDS.

layers causes the topology to become more connected, and
as a consequence the size of the EDS reduces, but not
as dramatically as when the diameter shrinks or when the
density increases. Again, MLEDS3 is the best performing
algorithm.

VI. RELATED WORK ON MCMCEDS

The MCMCEDS problem, although novel per se, has
connections to earlier work on finding minimum (connected)
edge dominating sets. The MEDS problem has been shown to
be NP-Complete in the single-layer case [14] in the central-
ized setting even for bipartite and planar graphs of maximum
degree 3. Furthermore, even finding a 7/6−approximation
of the optimal set has been shown to be NP-Hard [15].
The MCEDS problem has also been shown to be NP-
Complete [9, p. 102, Lemma 4.4.3].

MCMCEDS generalizes the plain (without any colors and
any weights) EDS problem [14], if we assume that all
edges have the same color. However, MCMCEDS cannot
be transformed into the plain MCEDS problem with weights
on edges [16] by assigning a uniform small weight to all
inter-layer edges, and a uniform large one to all intra-layer
edges, as in this case we might end up including all inter-
layer edges into the dominating set simultaneously, which is
not necessarily the most efficient solution. This is significant;
while a 3+ ε approximation exists for the weighted MCEDS
problem [7], it will not apply to our MCMCEDS case.
Problems related to stratified domination in graphs [17], [18]
ask for a coloring of nodes, but in MCMCEDS, the colors are
provided as part of the input to the problem. Problems related
to chromatic transversal domination [19] are also not related
to MCMCEDS for the same reason as stratified domination
(in our case the colors are part of the input, and we do not
seek a node coloring) and additionally because transversal
domination demands that the dominating set’s nodes should
necessarily touch all color classes.

The problems most closely related to MCMCEDS are
those reported in [5], where color classes are given, but
domination is defined such that all or none of the graph
elements (edges in our case) of a color class should be
included in the dominating set. However, the MCMCEDS
formulation allows for the inclusion of any number of edges
belonging to any color class; therefore, the formulation is

much more versatile (as compared to [5]) and encompasses
a larger possible set of MCEDSs from which to choose from.

VII. CONCLUSIONS

Motivated by applications in traffic monitoring in diverse
communication systems, we presented distributed algorithms
for the creation of connected Multi-colored Edge Dominating
Sets in multi-layer graphs. After showing that the underly-
ing problem is hard to solve, we showed that a heuristic
algorithm based on amending a connected node dominating
set to create a connected edge dominating set provides the
best performance. While our heuristics performed well over
a range of scenarios, establishing approximability results for
the MCMCEDS problem represents an important line of
future work.
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