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Abstract—The deployment of wireless sensor networks in
many application areas like environment control, target track-
ing in battlefields, requires an optimization to the communica-
tion among the sensors so as to serve data in short latency and
with minimal energy consumption. Cooperative data caching
has been proposed as an effective and efficient technique to
achieve these goals concurrently. The design of protocols for
such networks depends mainly on the selection of the sensors
which will take special roles in coordinating the procedure of
caching and take forwarding decisions. This article introduces
a new metric to aid in the selection of such nodes. Based on
this metric, we propose a new energy efficient cooperative
caching protocol, which is compared against the state-of-
the-art competing protocol. The simulation results attest the
superiority of the proposed protocol.

Keywords-wireless sensor networks, cooperative caching, la-
tency, energy conservation, social network analysis.

I. INTRODUCTION

The rapid technological advances in low-power hard-
ware design have enabled the development of tiny battery-
powered sensor nodes which are able to compute, sense
physical “parameters” and communicate with each other.
A wireless sensor network (WSN) is a network of large
numbers of sensors nodes, where each node is equipped with
limited on-board processing, storage and radio capabilities.
Sensor nodes are quasi-stationary, densely deployed and
with limited capabilities. Nodes sense and send their signals
towards a data center which is called the “information sink”.
The design of protocols and applications for such networks
has to be energy aware in order to prolong the lifetime
of the network because it is quite difficult to recharge
node batteries. Additionally, it has to take into account
the multi-hop communication nature. Communication in a
WSN between any two nodes that are out of one another’s
transmission range is achieved through intermediate nodes,
which relay messages to set up a communication channel
between the two nodes.

The success of the applications running over WSNs will
be determined at a large degree by the optimization of
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the communication among the sensors. It is critical for
the majority of applications to serve the requested data
in short latency and with minimal energy dissipation. The
cooperative data caching has been proposed as an effective
and efficient technique to achieve these goals [1], [2], [3] (for
more details cf. Section II). In cooperative caching, multiple
sensor nodes share and coordinate cache data without always
having to visit the data centers. Since the battery lifetime can
be extended if we manage to reduce the “amount” of com-
munication, caching the useful data for each sensor either in
its local store or in the near neighborhood can prolong the
network lifetime and reduce the communication overhead
and the data sources workload. Although the definition of
the network lifetime depends on the applications’ semantics,
a widely accepted definition is the time until the first/last
node of the network depletes its energy [4].

In order to address the latency and energy consumption
requirements of WSNs, we attempt to identify some sensor
nodes as being more significant than the others, w.r.t. coordi-
nating the procedure of caching. This fact helped realize the
significance of borrowing concepts from the field of Social
Network Analysis [5] (SNA) to the design of more efficient
cooperative caching protocols. Social network analysis is
based on an assumption of the importance of relationships
among interacting units. The social network perspective
encompasses theories, models, and applications that are
expressed in terms of relational concepts or processes. Along
with growing interest and increased use of network analysis
has come a consensus about the central principles underlying
the network perspective. SNA views social relationships in
terms of nodes and ties. Nodes are the individual actors
within the networks, while ties are the relationships between
the actors.

SNA have attracted significant interest initially from the
social and behavioral communities, later from the data min-
ing (Abdallah [6], Hwang et al. [7]) and only recently from
the networking community (Katsaros et al. [8], Taghizadeh
et al. [9]). SNA comprehends the study and exploitation
of the structural information present in the network, such
as existence and strength of communities (Saravanan et
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al. [10]), node centralities, network robustness to node
removal, topology evolution over time (Gilbert et al. [11])
and so on. Among the most significant tasks involved in SNA
is the calculation of centrality measures [12]. Point centrality
in communication is based on the concept of betweenness.
According to betweenness centrality, a node is central to the
degree that it stands between others. Various other measures
of centrality have been proposed to determine the importance
of a node within a graph [13] (cf. Section II).

The fundamental aspect in all the proposed cooperative
caching schemes for sensor networks is the identification
of the nodes which will implement the aspects of the
cooperation concerning the caching decisions, i.e., towards
which nodes will the data request will be forwarded? which
nodes will decide about which data will be cached in which
nodes? and so on.

A. Motivation and contributions

The early proposals for cooperative caching in WSNs and
Mobile Ad hoc Networks [1], [14] (MANETs), did not pay
attention to the selection of nodes that will have special
roles in the cooperation protocol. The work [2] pointed out
the singificance of the careful selection of these nodes; it
was argued there, that these nodes should be “central” in
the sensor network topology. Based on this, the authors
proposed a cooperation scheme where the sensors with
special role were selected based on their ability to influence
the communication between pairs of other nodes. This ability
was quantified by calculating the Node Importance index –
NI for each sensor, which is a localized version of the well-
known betweenness centrality index used in social network
analysis.

Network lifetime is prolonged by distributed energy con-
sumption. Nevertheless, the calculation of NI metric did not
take into account the remaining energy of sensor nodes in
order to determine the significant nodes. NI metric elects
always the same nodes as significant nodes. This has as a
consequence that central nodes will become points of failure
for WSNs. Thus, WSN can be partitioned due to absence of
an energy balancing policy.

Motivated by the aforementioned shortcoming, this article
proposes a new energy efficient metric to evaluate the
significance of a sensor to undertake special roles in the
cooperation, and based on this it describes a new cooper-
ative caching protocol. In particular, the article makes the
following contributions:

• It describes a new centrality metric for sensor nodes,
the EBC (Energy Betweenness Centrality), which is a
generalization of NI metric. The new metric is energy
efficient since its computation exploits the remaining
energy of sensor nodes. Additionally, the election of
significant nodes is not a static procedure, avoiding fast
depletion of their energy.

• It develops a new cooperative caching protocol for
WSNs, the EBCCoCa (EBC Cooperative Caching);
this protocol is compared against the state-of-the-art
protocol via simulation analysis, which attests the su-
periority of the proposed protocol in terms of energy
consumption.

The rest of this article is organized as follows: In Sec-
tion II we survey the most important works relevant to this
article, while in Section III we describe the new centrality
metric and the component of the proposed cooperative
caching protocol. Section IV presents the simulation envi-
ronment that was built to investigate the performance of the
proposed protocol, and also describes the experiments and
obtained results after the comparison of the protocol with
the competing state-of-the-art schemes. Finally Section V
conludes the article.

II. RELEVANT WORK

The issue of cooperative caching has attracted significant
attention in the literature concerning various types of dis-
tributed systems; in the Web [15], in file servers [16], and so
on. Nevertheless, the very limited capabilities of the sensor
nodes (in terms of energy, storage, and computation), the
particularities of the wireless channel (varible capacity), and
the multi-hop fashion of communication, turns the solutions
proposed in the aforementioned environments, of limited
usefulness.

In distributed systems over wireless networks based on
multi-hop communication, cooperative caching has been
proven a very efficient strategy to shorten the communi-
cation latency and conserve energy. Nuggehalli et al. [17]
addressed the problem of energy-conscious cache placement
in wireless ah hoc network, and [18] considered the cache
placement problem of minimizing total data access cost in
ad hoc networks with multiple data items and nodes with
limited memory capacity, and presented a polynomial-time
centralized approximation algorithm to attack the problem,
since it is NP-hard. Though these works address cache
placement issues.

The most important relevant works are those reported
in [1], [2], [14]. The work reported in [14] considered
cache replacement issues for wireless ad hoc networks but
in the context of a very limited form of cooperation; a node
which requests a data searches either in its local cache or
in the caches of its 1-hop neighbors (otherwise forwards
the request to a ficticious data center). Thus, remote hits
can not happen take in this protocol. Yin & Cao proposed
the Hybrid cooperative caching protocol, which exploited
both data and node locality in an homogeneous manner,
but this policy was proved inferior to NICoCa, described
in [2] which took special consideration to select appropriate
“central” nodes to carry out and coordinate the cooperation.
However, the selection of “central” nodes does not take into
consideration the remaining energy of sensor nodes. Thus,
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the energy consumption of significant nodes will have as a
consequence the reduction of network lifetime and finally
the network fragmentation.

There are various measures of centrality and the most
prominent of them are going to be presented in the following
section.

A. Centrality Metrics

One major concept for the analysis of social networks
is centrality. Centrality metrics have been used to identify
the role of individual nodes in a network and study their
relationship to their neighboring nodes. Even though one of
these metrics, betweenness centrality [13], was introduced
in the 70s, the research community did not apply social
network techniques to sensor networks until only the last
couple of years. Betweenness is a centrality measure of a
vertex within a graph. Vertices that occur on many shortest
paths between other vertices have higher betweenness than
those that do not.

The simplest centrality metric is degree centrality [5]
and refers to the number of direct connections a node
has to its neighbors. Degree is often interpreted in terms
of the immediate risk of node for catching whatever is
flowing through the network (some information). Degree
centrality favors over nodes that have many one-hop neigh-
bors. However, some times this is misleading especially in
cases where many one-hop neighbors are at the edge of
the network. Another popular centrality metric is closeness
centrality. Closeness centrality [5] describes the efficiency
of information propagation from one node to all the others,
and it is defined as the inverse of the sum of the distances
between a given node and all other nodes in the network.
The distance can be measured in number of hops, delays,
and so on. Closeness centrality gives an estimate of how
long it will take information to spread from a given node to
the rest of the network actors.

In [7] Hwang et al. proposed a centrality metric called
Bridging Centrality (BC). The metric focuses on what
the authors call bridging nodes, which are the nodes that
are located in between highly connected regions and are
therefore crucial for the connectivity and routing inside the
network. The main drawback of the algorithm was that it
was centralized and therefore global network knowledge was
necessary.

All of the above centrality metrics have been defined in a
centralized fashion (i.e., taking into account all the network
nodes). Such centralized computations are prohibitive for
sensor networks due to the communication complexity of
learning the whole network topology, and thus localized
versions of them have been used in the literature of protocol
design. Localized centrality metrics have been proposed in
the recent literature [2], [8], [19]. However, these centrality
metrics does not take into account the energy consumption

of sensor nodes. Thus, the sensor nodes elected by centrality
metrics will deplete their battery quite fast.

III. THE NEW COOPERATIVE CACHING SCHEME

One of the main parts of the proposed protocol is the esti-
mation of the importance of sensors relative to the network
topology and the remaining energy. The intuition is that if we
discover those nodes which have enough remaining energy
and reside in a significant part of the (short) paths connecting
other nodes, then these are the “important” nodes; then they
may be selected as coordinators for the caching decisions,
i.e., as “mediators” to provide information about accessing
the requested data or even as caching points.

A. Measuring sensor node importance

A wireless sensor network is abstracted as a graph
G(V,E), where V is the set of its nodes, and E is the
set of radio connections between the nodes. An edge e =
(u, v), u, v ∈ E exists if and only if u is in the transmission
range of v and vice versa. All links in the graph are
bidirectional, i.e., if u is in the transmission range of v, v is
also in the transmission range of u. The network is assumed
to be in a connected state. The set of neighbors of a node
v is represented by N1(v), i.e., N1(v) = {u : (v, u) ∈ E},
while the set of two-hop nodes of node v is represented
by N2(v), i.e., N2(v) = {w : (u,w) ∈ E, where w �=
v and w /∈ N1 and (v, u) ∈ E}. The combined set of one-
hop and two-hop neighbors of v is denoted as N12(v).

A path from u ∈ V to w ∈ V has the common meaning
of an alternating sequence of vertices and edges, beginning
with u and ending with w. The length of a path is the number
of intervening edges. We denote by dG(u,w) the distance
between u and w, i.e., the minimum length of any path
connecting u and w in G, where by definition dG(v, v) =
0, ∀v ∈ V and dG(u,w) = dG(w, u), ∀u,w ∈ V . Note
that the distance is not related to network link costs (e.g.,
latency), but it is a purely abstract metric measuring the
number of hops.

Let σuw = σwu denote the number of shortest paths from
u ∈ V to w ∈ V (by definition, σuu = 0 ). Let σuw(v)
denote the number of shortest paths from u to w that some
vertex v ∈ V lies on. Let sepuw = sepwu denote the shortest
energy path from node u ∈ V to node w ∈ V . Shortest
energy path is defined as the multi-hop path that connects
two nodes with the minimum energy dissipation among the
intermediate nodes. The shortest path consists of those nodes
that have the biggest amount of remaining energy and sepuw
value is the fraction of the summation of edges’ weights that
correspond to the path to the number of edges. Initially, each
node represents its remaining energy Er as percentage of the
initial energy Ei. Then, the computation of weight involves
the exchange of remaining energy among neighboring nodes.
Each edge e = (u, v), u, v ∈ E is assigned with weight
wuv = (Eu + Ev)/2. For instance, the energy path values
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for the edges connecting two nodes B, E that belong to a
local network (see Figure 1) are indicated in Table I. Then,
we define the energy betweenness centrality index EBC(v)
of a vertex v as:

Definition 1: The EBC(v) of a vertex v is equal to:

EBC(v) =
∑

u�=v �=w∈V

a · sepuw(v)+ (1− a) · σuw(v)

σuw
. (1)

Large values for the EBC index of a node v indicate
that this node v can reach others in relatively short paths
and there are short energy paths that pass through node v.
Thus, a node v with large value of EBC index can connect
other nodes while prolongs the network lifetime. Parameter
a determines the degree of participation of shortest energy
path in calculation of EBC index. It is obvious that for
a = 0.0 EBC index is equal to NI index.

0.45B(1.2) E(0.8)

D(1.1)C(1.4)

F(1.2)

G(1.4)H(1.5)

A(1)

0.65

0.625

0.475

0.50.65
0.7250.675

0.55

Figure 1. A local network. Each edge is characterized by a weight. The
numbers in parentheses denote the remaining energy of the respective node.

Path Energy Path Value
BAE 0.5

BCDE 0.58
BHGFE 0.63

Table I
THE PATHS THAT CONNECT NODES B AND E AND THE CORRESPONDING

VALUES .

B. The EBC Cooperative Caching protocol

Without loss of generality and adopting the model pre-
sented in [1], we assume that the ultimate source of data
is a Data Center. This is not restrictive at all and simply
guarantees that every request, if it is not served by other
sensor nodes and if does not expire, will finally be served
by the Data Center.

At the very first step, it is supposed that each sensor
is aware of the number, remaining energy and identity of
its 2-hop neighbors; this is achieved with the exchange
of “HELLO” messages. We assume that we are able to
determine an assignment of time slots to the sensor nodes
such that no interference occurs, i.e., no two nodes transmit

in the same time slot. Such a scheme can be found using
the D2-coloring algorithm from [20]. Then, every node
calculates the EBC index of its 1-hop neighbors. The node
uses this information in order to characterize some of its
neighbors as mediator nodes; the minimum set of neighbors
with the larger EBC which “cover” its 2-hop neighborhood
are the mediator nodes for that node; The node is responsible
for notifying its neighbors about which of them are its
mediators. Thus, a node can be either a mediator or an
ordinary node.

It is supposed that each sensor is aware of its remaining
energy and of the free cache space; Additionally, each sensor
node stores the following data/metadata:

• The dataID, and the actual data item.
• The latency to obtain a data item (using exponential

smoothing).
• The size Sizei of datum i.
• A TTL interval (Time-To-Live) for each datum.
• For each cached item, the timestamps of the K most

recent accesses to that item (usually, K = 2 or 3).
• Each cached item is characterized either as O (i.e., own)

or H (i.e., hosted). If an H-item is requested by the
caching node, then its state switches to O.

When a sensor node issues a request for a data item,
it searches its local cache. If the item is found there (a
local cache hit) then the K most recent access timestamps
are updated. Otherwise (a local cache miss), the request is
broadcasted and received by the mediators. If none of them
responds (a “proximity” cache miss), then the request is
directed to the Data Center.

When a non one-hop mediator node receives a request, it
searches its local cache. If it deduces that the request can
be satisfied by a neighboring node (a remote cache hit),
then stops the request’s route toward the Data Center, and
forwards the request to this neighboring node. If more than
one nodes can satisfy the request, then the node with the
largest residual energy is selected. If the request can not
be satisfied by this mediator node, then it does not forward
it recursively to its own mediators. This is due to the fact
that these mediators will most probably be selected by the
routing protocol as well (AODV) and thus a great deal
of savings in messages is achieved. Therefore, during the
procedure of forwarding a request toward the Data Center,
no searching to other nodes is performed apart from the
nodes which reside on the path toward the Data Center.

For every issued request one of the following four cases
may take place:

1) Local hit (LH): the requested datum is cached by the
node which issued the request. If this datum is valid
(the TTL has not expired) then the EBCCoCa is not
executed.

2) “Proximity” hit (PH): the requested datum is cached
by a node in the 2-hop neighborhood of the node
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which issued the request. In this case, the mediator(s)
return to the requesting node the “location” of the node
which stores the datum.

3) Remote hit (RH): the requested datum is cached by a
node and this node has at least one mediator residing
along the path from the requesting node to the Data
Center.

4) Global hit (GH): the requested datum is acquired from
the Data Center.

C. The cache replacement component

A cache replacement policy is required when a sensor
attempts to cache an object, but the cache is full. In
replacement operation one or more objects are evicted out
of the local cache (due to providing sufficient space) and
new one is cached. The EBCCoCa protocol employs the
a value based policy. Initially each sensor node removes the
object that it has cached on behalf of some other node. Each
cached item is characterized either as O (i.e., own) or H (i.e.,
hosted). In case of a local hit, then its state switches to O.

If the available cache space is still smaller than the
requested object, then for each cached object i the following
function is calculated: cost(i) = Lati∗Sizei

TTLi∗ARi
. The objects

with the greatest values are those that are removed from the
cache. When a sensor gets a reply message, it calculates the
incurred latency (Lat). The smaller the latency of an object
is, the more likely to remain to cache. The access rate (AR)
indicates the frequency that a cached item is being requested,
while time-to-live (TTL) value determines the validity of a
cached object. An object remains in cache when AR and
TTL are big. Finally, the bigger the size of an object is, the
more likely to be removed from the cache.

During the final step, cache node notifies the mediators
about the candidate victim. If the object is also cached by
another node in the neighborhood, then mediators broadcast
a delete message and the object is evicted out of the local
cache. Otherwise, each mediator send a message that con-
tains the node that has the largest residual energy and enough
space to cache the object. In this case, the node purges the
object and send it to the node with the largest residual
energy. Finally, mediators update their cached metadata
about the new state.

IV. PERFORMANCE EVALUATION

We evaluated the performance of the EBCCoCa proto-
col through simulation experiments. We conducted a large
number of experiments with various parameters, and com-
pared the performance of EBCCoCa to the state-of-the-art
cooperative caching policy for WSNs, namely NICoCa [2].1

For the interest of space, we present here only the most
important, representative experiments and respective results.

1In [2], the NICoCa protocol was compared against the Hybrid caching
scheme [1], for many data/request distributions and many network topolo-
gies, and NICoCa proved superior in all cases.

As stated before NICoCa protocol constitutes a special
case of EBCCoCa protocol. This happens when parameter
a equals 0.0.

A. Simulation model

Both protocols have been implemented and evaluated
with the J-Sim wireless network simulator [21]. In our
simulations, the AODV [22] routing protocol is deployed to
route the data traffic in the wireless sensor network. We use
IEEE 802.11 as the MAC protocol and the free space model
as the radio propagation model. The wireless bandwidth is 2
Mbps. The radio characteristics used in our simulations are
summarized in Table II.

Operation Energy Dissipated
Transmitter/Receiver

Electronics Eelec = 50nJ/bit
Transmit Amplifier

if dtoBS ≤ d0 efs = 10pJ/bit/m2

Transmit Amplifier
if dtoBS ≥ d0 emp = 0.0013pJ/bit/m4

Data Aggregation EDA = 5nJ/bit/signal

Table II
RADIO CHARACTERISTICS.

The protocols has been tested for a variety of sensor net-
work topologies, to simulate sensor networks with varying
values of node degree, from 4 to 10. Thus, we are able
to simulate both sparse and dense sensor deployments. We
experiment with various sizes of the sensor networks; we
present here the results for two cases, namely when the
number of sensors is 100 and 500. The distribution of the
sizes of the data items is uniform between 1KB and 10KB.

The generated network topology consists of many square
grid units where one or more nodes are placed. The number
of square grid units depends on the number of nodes and
the node degree. The topologies are generated as follows:
the location of each of the n sensor nodes is uniformly
distributed between the point (x = 0, y = 0) and the point
(x = 500, y = 500). The average degree d is computed by
sorting all n∗(n−1)/2 edges in the network by their length,
in increasing order. The grid unit size corresponding to the
value of d is equal to

√
2 times the length of the edge at

position n ∗ d/2 in the sorted sequence. Two sensor nodes
are neighbors if they placed in the same grid or in adjacent
grids. The simulation area is assumed of size 500m×500m
and is divided into equal sized square grid units. Beginning
with the lower grid unit, the units are named as 1, 2, . . ., in
a column-wise fashion.

The client query model is similar to what have been
used in previous studies [2], [1]. The access pattern of
sensor nodes follow the well-known Zipfian distribution
with parameter θ (for θ = 0.0, we get a uniform access
pattern; for values of θ around 1, the access pattern is highly
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skewed). The sensors residing in neighboring grids (25 grids
with size 100m× 100m) have the same access pattern. We
conducted experiments with varying θ values between 0.0
and 1.0. Here, we present the results for θ = 0.8. Each
sensor node generates 200 requests.

Similar to [2], [1], two Data Centers are placed at opposite
corners of the simulation area. Data Center 1 is placed at
point (x = 0, y = 0) and Data Center 2 is placed at point
(x = 500, y = 500). There are N/2 data items in each data
center. Data items with even ids are stored at Data Center 1
and data items with odd ids are stored at Data Center 2.
We assumed that data items are not updated. The system
parameters are listed in Table III.

Parameter Default value Range
# items (N ) 1000

# requests per node 200
Smin (KB) 1
Smax (KB) 10
# nodes (n) 500 100–1000

Bandwidth (Mbps) 2
Waiting interval (tw) 10 sec

Cache size (KB) 800 200 to 800
Zipfian skewness (θ) 0.8 0.0 to 1.0

Table III
SIMULATION PARAMETERS.

The measured quantities include the number of hits (local,
remote and global), the network lifetime of the sensor
network, the average latency for getting the requested data
and the number of packets dropped. It is evident that
large number of remote hits proves the effectiveness of
cooperation in reducing the number of global hits. A large
number of local hits does not imply an effective cooperative
caching policy, unless it is accompanied by small number of
global hits, since the cost of global hits vanishes the benefits
of local hits.

B. Evaluation

We performed a large number of experiments varying the
size of the sensor networks (in terms of the number of its
sensor nodes), varying the access profile of the sensor nodes,
and the cache size relative to the aggregate size of all data
items. In particular, we performed experiments for cache size
equal to 1% and to 5% of the aggregated size of all distinct
data, for access pattern with θ starting from 0.0 (uniform
access pattern) to 1.0 (highly skewed access pattern), and
for average sensor node degree equal to 4, 7 (sparse and
moderate dense sensor networks, respectively) and 10 (dense
sensor network). For the interest of space we present a small
subset of the results obtained (shown in Figures 2 – 6). In
these experiments we evaluate the impact of the a parameter
and the amount of the sensor storage on the number of hits
and latency. Additionally, we evaluate the impact of the a
parameter and the number of sensors in network lifetime.

NICoCa protocol corresponds to EBCCoCa protocol
with parameter a equals 0.0. We didn’t depict the energy
consumption during the exchange of “HELLO” messages,
since the protocol requires only four bytes to implement the
exchange and thus the overhead to the overall performance
is negligible.

As expected, both cooperative caching schemes exhibit
better performance for all metrics with increasing cache size;
therefore caching is indeed a useful technique, irrespectively
of the network topology. As the cache space in each sensor
increases toward an infinite cache, that could ideally accom-
modate all items, the actual performance gap (latency and
travelling messages) between the protocols diminishes. The
second generic observation is that the proposed EBCCoCa
protocol prolongs network lifetime for large values of pa-
rameter a while it achieves a better performance in dense
networks in terms of latency and remote cache hits.
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Figure 2. Impact of a on remote cache hits in a sparse (d = 4) WSN
with θ = 0.8.
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Figure 3. Impact of a on remote cache hits in a dense (d = 10) WSN
with θ = 0.8.

It is interesting to note that both protocols achieve almost
the same number of remote cache hits in sparse (d = 4)
WSNs. This is because of small number of nodes partici-
pating in local network. Both protocols elect almost the same
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number of mediators and in many cases the same nodes as
mediators. However, in dense (d = 10) WSNs EBCCoCa
performs slightly better than NiCoCa for a greater than 0.5.
This is due to the selection of mediator nodes. For large
values of parameter a EBCCoCa protocol is affected more
by shortest energy path. The shortest energy path contains
more nodes than shortest path without weights on edges.
Thus, more nodes become mediators and a great number of
requests are satisfied by mediators without reaching in Data
Centers.

The performance of the protocols with respect to the
average latency incurred for varying cache sizes and a values
for both sparse and dense sensor network deployments are
depicted in Figures 4 and 5. The dominant observation is that
caching is more beneficial for sparse networks, since it can
balance the (relatively) longer paths to the data that increase
the latency. The second observation is the superiority of
EBCCoCa protocol in dense WSNs for large values of
parameter a. The relative results follow the same trends that
we observed in the previous experiment; there is a close
connection between the number of remote cache hits and
latency, since the more the number of remote hits, the less
the latency in accessing the data.

In general, the performance of each protocol gets better
in dense sensor networks, since we constrain more sensor
nodes to be dispersed in the same geographical region,
thus creating more replicas of the same data and providing
more alternative paths to the data. This better performance
is reflected to the access latency, hit ratio and message
overhead.
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Figure 4. Impact of a on latency in a sparse (d = 4) WSN with θ = 0.8.

Finally, we evaluated the performance of the algorithms
with respect to the energy consumption for varying a values
and cache sizes for both sparse and dense sensor network
deployments. The results are depicted in Figures 6 and 7.
The prolongation of the network lifetime is the major
objective of EBCCoCa protocol. Due to EBC index that
comprehends the remaining energy of nodes in calculation
of shortest paths, the mediators will not be always the same.
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Figure 5. Impact of a on latency in a dense (d = 10) WSN with θ = 0.8.

Thus, EBCCoCa protocol achieves a better energy balance
among sensors in WSNs. The lifetime of dense networks is
prolonged from 15% to 30% by EBCCoCa protocol.

In summary, for dense network topologies EBCCoCa is
able to better capture the energy “significant” nodes in the
sensor network. Thus, EBCCoCa can prevent the network
partition due to energy dissipation of mediator nodes, while
minimizes latency.
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Figure 6. Performance of EBCCoCa in a sparse (d = 4) WSN with
θ = 0.8. Network lifetime (first node death).

V. CONCLUSIONS

The majority of applications based on wireless sensor
networks depends mainly on the ability of the underlying
protocols to scale to large number of sensors, to conserve
energy and provide answers in short latency. Cooperative
data caching has been proposed as an effective and efficient
technique to achieve these goals concurrently. The design of
these protocols depends mainly on the selection of the sensor
nodes which will take special roles in running the caching
and request forwarding decisions. The article introduced a
new centrality metric that aid to select such nodes, and
proposed a new energy efficient cooperative caching protocol
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Figure 7. Performance of EBCCoCa in a dense (d = 10) WSN with
θ = 0.8. Network lifetime (first node death).

(EBCCoCa), which proved superior to the state-of-the-art
competing protocol.
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