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Abstract— Monitoring and maintaining communications in a
multilayer ad hoc wireless network requires a stable commu-
nication overlay. Such monitoring should be resilient, avoiding
reliance on a single (or a few) layers, and energy-aware, not
being vulnerable to the exhaustion of available energy in a
single network element. Thus, there is possibly a trade-off
between overlay size, interlayer connectivity, and the energy
distribution within the overlay. In this paper, we present three
distributed energy-aware multilayer connected edge dominating
set algorithms, show how they manage such trade-offs in
practical scenarios, and show that CCEDS, a pruned centrality-
based distributed algorithm, has the best performance.

I. INTRODUCTION

Modern military battlefields consist of an increasing ar-

ray of entities with wireless communication and sensing

capabilities. In previous work [1], such heterogeneous allied

systems have been modeled as multilayer ad hoc networks,

in which each layer represents a type of battlefield entity

(e.g., helicopters, UAVs, infantry); such multilayer tactical

networks may arise in other settings as well, e.g., [2].

Designing networks with high numbers of inter-layer links

immunizes the network to (possibly correlated) failures in

any particular layer.

While the increased number of layers and inter-layer

links increases the resilience of such networks, it compli-

cates network functions such as routing and scheduling. To

accomplish these tasks successfully in the long run, the

network must be able to sense changes in topology, and

specifically link failures, efficiently, with the sensing overlay

itself being resilient to the same failures. This necessitates

the design of resilient network overlays for either network

management/monitoring or data forwarding, as the commu-

nication among different layers cannot be allowed to break

easily (accidentally or due to malicious attacks). The sensed

information gathered (and aggregated) by such a network

overlay can be used in both centralized and decentralized

control of the aforementioned network functions.

Distributed computation of a resilient network overlay

for communication link monitoring in single layer ad hoc

networks has been well studied, e.g., [3], [4]; This is different

from traditional distributed approaches to ad hoc routing as
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routing algorithms are designed to minimize latency (thus

seeking shortest-paths) or increase availability and prevent

network choking (thus selecting multiple paths to the desti-

nation).

The computation of a resilient network overlay for multi-

layer ad hoc networks is significantly harder to address, espe-

cially using distributed algorithms, because coordination fail-

ures can lead to loss of communication or over-dependence

on a specific layer. A first effort towards achieving the goal

of building resilient overlays for multilayer ad hoc networks

introduced custom-designed locally-computable centrality

metrics [1]. However, neither the aforementioned work nor

any others have considered the energy limitations of network

entities in designing resilient overlays for link monitoring

in multilayer ad hoc networks. Even though some network

entities might be energy-rich, e.g., vehicles, others may face

severe energy limitations, e.g., sensors, UAVs. Recharging

batteries may be very difficult for entities deployed in a

battlefield, as it both consumes time and detracts attention

from the mission at hand. Therefore, the overlay should be

built in such a way that all included entities have enough

energy to keep the overlay operational and connected for as

long as possible. Such energy-aware overlay creation is the

goal of this paper.

However, the algorithms in [1] cannot be adopted here,

because the current problem calls for solutions that incorpo-

rate as many links among different layers as possible into

the overlay with the goal of increasing resiliency. Therefore,

our problem cannot be described in terms of calculating a

connected node dominating set for multilayer networks (as

it was in [1]).

A. Motivating example

As an example, consider the two-layer network shown in

Fig. 1, with the layers representing infantry and airborne

units, and the node weights in parentheses denoting energy

levels – the network is comprised of nodes Si and Ci, and

black links (those between nodes of the same layer) and red

ones (those between nodes of different layers) links. It is

assumed that communications between any two entities can

traverse any path, and that monitoring the communications

on an edge requires that we monitor at least one of its

associated vertices.

We can monitor all links in such a network by picking

an Edge Dominating Set (EDS).1 However, a communica-

tion overlay requires communication and coordination, not

just a monitoring capability, and thus we are interested in

1An EDS is a set of edges such that every edge within the network shares
an endpoint with one of the edges of the chosen edge-set.
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Fig. 1. A multilayer network with (square and circular) nodes connected
by black (intralayer) and red (interlayer) links. Three different connected
edge dominating sets, namely set of purple edges (with small squares on the
links), set of blue edges (with small circles on the links) and set of green
edges (with small triangles on the links) are also depicted.

creating a Connected EDS (CEDS). A CEDS allows the

aggregation of monitored information, which is useful for

situational awareness and sense-making by commanders in

decentralized battlefields.

B. Objective

Our goal is to find a CEDS that is small in size, has many

interlayer links, and which is energy-aware, in a distributed

manner. Each of these goals, which are driven by practical

concerns, impose limitations on the set of acceptable network

overlays, leading to possible trade-offs:

1) Cardinality: A smaller CEDS limits the possible points

of failure of the communication overlay.

2) Number of interlayer links: A resilient multilayer net-

work overlay must limit dependence on any particular

network layer while also limiting the likelihood of

“islanding”, i.e., the loss of communication among

network layers. Increasing the number of interlayer

links accomplishes these goals simultaneously.

3) Energy awareness: Communication and monitoring are

both energy-intensive activities. The resulting energy

depletion may exhaust the batteries of network ele-

ments, disconnecting the overlay and/or resulting in

the loss of monitoring capabilities. In such settings,

the CEDS must be created anew, a time- and energy-

intensive process. Thus, the distribution of energy

among elements chosen in the overlay must be such

that there are fewer low-energy elements.

4) Distributed computation: The aggregation of informa-

tion and the implementation of centralized decisions

are major challenges in such ad hoc networks. A

distributed algorithm, in which the network elements

make determinations on their presence or absence in

the overlay using local information, allows the creation

and maintenance of the overlay in battlefields.

For example, in Fig. 1, each of the purple (small squares

on links), blue (small circles on links) and green (small

triangles on links) sets of edges comprise a (minimum

cardinality) CEDS. The blue and purple overlays have the

same number of inter-layer links, yet the edges in the blue

overlay have end-points with higher energy levels, making it

a preferable option. The green overlay is the best among the

three, because it has more interlayer links and it is comprised

of higher energy elements.

C. Contribution

We now clarify the difference between the present work

and our own research that initiated the study of domination

in multilayer networks, and also to highlight its main con-

tributions.

In [1], [15] we analytically and experimentally investi-

gated the problem of node domination for multilayer net-

works, whereas here we study edge domination for mul-

tilayer networks. In [6] – which is the companion paper

of the present one – we introduced the problem of edge

domination for multilayer networks, showed its relation to

network control through the concept of maximal matching,

gave complexity bounds, and developed heuristic algorithms.

Here, we generalize the concepts of that paper by adding

one more requirement, that of energy efficiency. This gener-

alization presents challenges, because energy is not a feature

of the edges, but of the network nodes, and thus new

methods are needed to transform “node quantities” into “edge

quantities”.

In summary, the present article contributes a generalization

of the problem introduced in [6], characterizes its complexity,

provides simple and elegant methods to exploit node features,

such as centrality and available energy, in order to quantify

edge significance, and develops efficient heuristic algorithms

to address the new problem. The rest of the paper is orga-

nized as follows: Section II formalizes the investigated prob-

lem; section III describes the proposed distributed heuristic

algorithms to solve it; section IV analyzes their performance;

and section V concludes the paper.

II. THE EA-MCMCEDS PROBLEM

We first provide formal definitions of the domination

concepts used to describe the overlay in single layer set-

tings [5], and then factor in the effects of a multilayered

architecture and energy-awareness, which set our problem,

henceforth called the Energy-Aware Minimum Connected

Multi-Colored Edge Dominating Set (EA-MCMCEDS), apart

from the existing literature. The subsections proceed in the

order of the four goals of the paper outlined in §I-B.

A. Minimum cardinality connected edge domination

For a single layer network G = (V,E), an edge dominat-

ing set (EDS) is defined as follows:

Definition 1: An Edge Dominating Set (EDS) for G is a

subset of the edge-set E′ ⊆ E such that for each edge e ∈ E,

we either have e ∈ E′, i.e., e is a dominating edge, or there

exists an edge e′ ∈ E′ such that e′ and e share a vertex,

i.e., e is a dominated edge, covered by e′. A Minimum Edge

Dominating Set (MEDS) of G is an EDS E′ with the least

possible cardinality |E′|.
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As a consequence of this definition, for a vertex v, one

of the following two possibilities holds: [Case (a)] v will

be one of the two endpoints of an edge belonging to the

EDS; in which case we will call it a member of the overlay,

e.g., vertices S6 and S7 for either blue or green overlay

in Fig. 1. [Case (b)] v, a non-member of the overlay, will

be at one hop distance from a member of the overlay, e.g.,

vertex S2 for either blue or green overlay in Fig. 1. We can

easily observe (by contradiction) that all vertices at a one-hop

distance from a non-member of the overlay will be overlay

members. This means that placing monitoring devices on the

vertices (endpoints) of EDS edges will allow the monitoring

of all communication within the system.

Overlay vertices can further be categorized into two

groups: [Case a1] v will be a core overlay member if more

than one EDS edge is incident to v; e.g., vertex S7 in Fig. 1

for either the blue or green overlay. [Case a2] Otherwise, if

exactly one EDS edge is incident to v, it will be a peripheral

overlay member; e.g., vertex S6 in Fig. 1 for either the blue

or green overlay.

A further refinement to the EDS adds a notion of inde-

pendence to the chosen edges:

Definition 2: An Independent Edge Dominating Set

(IEDS) of G is an EDS E′ such that no two edges within E′

share an endpoint (vertex). An IEDS is also called a maximal

matching [11].

Any minimum-cardinality IEDS (i.e., minimum maximal

matching) will also be a Minimum Edge Dominating Set

(MEDS) [12]. For an EDS of a certain cardinality (number

of edges), the IEDS will require the most number of monitor-

ing devices. However, there may exist some MEDSs requir-

ing fewer monitoring devices than the minimum-cardinality

IEDS [12].

While the EDS captures the goal of monitoring commu-

nications, it may not be able to provide the coordination and

communication capability that is required of an overlay. For

coordination within the chosen subset of edges, we introduce

the notion of a Connected Edge Dominating Set (CEDS):

Definition 3: A Connected Edge Dominating Set (CEDS)

of G is an EDS E′ such that the edge-induced subgraph

G(E′) is connected. The Minimum Connected Edge Domi-

nating Set (MCEDS) is the CEDS with the minimum edge-

cardinality.

B. Edge domination in multilayer networks

We now consider the equivalent of the single layer con-

cepts described above in the context of multilayer networks,

and describe how the relevant concepts described in §I-B can

be captured in the creation of an overlay in such networks.

We first define (GML, EML) to represent a multilayer

network, with GML = {G1, G2, . . . , Gm} such that:

• Gi = (Vi, Ei) is a single layer network for all 1 ≤ i ≤
m, with m being the number of layers.

• EML = {Eij ⊆ Vi× Vj |1 ≤ i, j ≤ m, i 6= j} is the set

of existing interlayer links.

It follows that:

Definition 4: A CEDS of the multilayer network

(GML, EML) is a set of edges E′′ ⊆ (
⋃m

i=1
Ei)

⋃
EML

such that the induced single layer subgraph on the vertex-set⋃m

i=1
Vi is a CEDS.

The communication overlay should not be excessively

reliant on any single layer, as it would be vulnerable to

correlated failures. Thus, an ideal overlay would minimize

the total number of edges within the overlay while at the

same time maximizing the number of interlayer links.

Definition 5: A Minimum Connected Multi-Colored Edge

Dominating Set (MCMCEDS) E′′ of the multilayer network

(GML, EML) is a CEDS with minimum cardinality |E′′| that

has the maximum number of interlayer links, |E′′
⋂
EML|.

Such a set is called multi-colored due to the practice of

assigning a different non-black color to the elements of EML

for each pair of layers connected by an edge, with all ele-

ments in (
⋃m

i=1
Ei) being considered black [6, Definition 7].

C. Energy availability and constraints

Key results within the field of ad hoc networks have

pointed to the importance of factoring in the energy distri-

bution among nodes, and not just the aggregate available

energy, in network decisions. In particular, it has been

shown that under certain circumstances, network lifetimes

are maximized under equitable distributions of energy within

the network, and that optimal communication policies put

more of the communication burden on the network elements

with the most remaining energy [9], [10]. Here, we assume

that the energy available to each network element is known

to that network element and can be communicated to its

neighbors. Thus, we can adapt our overlay creation methods

to be energy-aware:

Definition 6: An MCMCEDS creation method is Energy-

Aware (EA) if it utilizes the energy available to network

elements to find an overlay with high energy elements.

Ideally, all overlay nodes will have high energy, yet there is a

possible trade-off between the cardinality and connectedness

of the MCMCEDS and the energy of the overlay elements.

To elaborate, given the results described from the ad hoc

networks literature, our aim is to avoid elements with low

energy in the overlay, even if they are well connected.

Moreover, we seek to have higher energy nodes as core

nodes, as such nodes have to relay information as well as

performing the sensing and communication common to all

overlay nodes. We further explore these concepts in our

simulations (§IV-A).

D. Distributed energy-aware overlay generation

The nature of ad hoc networks demands that the overlay

creation algorithm be distributed, with each element only

having knowledge of their k-hop neighborhood. (Here, k =
2.) This adds the final element to the problem at the heart

of this paper:

Problem 1 (Distributed EA-MCMCEDS Computation):

We seek to find an energy-aware distributed algorithm that

computes an MCMCEDS of a multilayer network given the

energy available to network elements (i.e., vertices).
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Proposition 1: Distributed EA-MCMCEDS computation

is NP-hard.

It is easy to prove Proposition 1 following the reasoning

of [6, Theorem 1], which involves a reduction from the NP-

complete MCEDS problem [7, p. 102, Lemma 4.4.3]. Thus

we will develop heuristic algorithms to solve the Distributed

EA-MCMCEDS problem.

III. PROPOSED DISTRIBUTED ALGORITHMS

Here we describe three energy-aware distributed algo-

rithms that heuristically solve the EA-MCMCEDS problem.

The common principle in all the proposed algorithms is

that when seeking which edges to include into the edge

dominating set, these edges are selected based on their ability

to a) dominate many other edges, b) connect different layers,

and c) have energy-rich endpoints. Towards translating these

goals into a heuristic rule for selecting edges, we use the

local centrality measure we proposed in [1], clPCI, which

we now enhance to take energy levels into account. Striving

for simplicity and generalizability, along the lines of earlier

works, e.g., [13], [15], we adopt a plain generalization of

clPCI, termed EclPCI, for a node u with energy E(u):

EclPCI(u) := E(u)× clPCI(u). (1)

The computation complexity of EclPCI index is O(∆2)
in the worst case, where ∆ is the maximum node degree in

the network [15]. The value of EclPCI is used to prioritize

nodes/edges. While other measures may quantify the same

factors, EclPCI is the most natural one that combines en-

ergy availability of nodes with the computationally simple

distributed centrality metric. Whenever edge-weights are

needed, we define them to be the product of the EclPCI

values of the endpoints (vertices) of the edge, so as to pri-

oritize edges whose endpoints are both energy-rich vertices

and possess strategic positions within the topology.

For the construction of the edge dominating set, the

proposed algorithms either work with nodes to calculate node

dominating sets and then turn them into edge dominating

sets, or with edges (actually on their equivalent nodes in the

line graph [5] of the original graph). In the interest of space,

we give brief descriptions of the algorithms and provide their

computation complexities and their pseudo-codes.

The first algorithm, CCEDS, calculates a connected node

dominating set (CDS) and then applies a pruning mechanism

using connectivity as quantified by EclPCI to establish a total

order among nodes in the CDS. The set of edges whose

endpoints are CDS nodes comprise the initial EDS. Finally,

it adds into the EDS any edges that are attached to edges

not incident to DS nodes. The details of the algorithm are

shown in Algorithm 1.

Proposition 2: The computation complexity of CCEDS

is O(∆3), where ∆ is the maximum node degree in the

network.

Proof: The worst-case construction phase of the CDS

occurs when a host u has ∆ neighbors and each one

of them contributes ∆ nodes to the coverage of the 2-

hop neighborhood of u. In this case, host u needs to run

once over its neighbor set of size O(∆) and “erase” those

nodes of the 2-hop neighborhood of u (which has maximum

size O(∆2)) covered by the specific neighbor. Further, the

computation complexity of the respective pruning phase is

also O(∆3) because a node u, in order to decide if it will

act as a relay node or not, needs to calculate the coverage

capability of a connected graph composed of both 1-hop

and 2-hop neighbors. Thus, each relay node u compares

its neighbor set with ∆2 neighbors in the worst case, and

the neighbor set comparison has O(∆) complexity. Finally,

the computation complexity of complementing the EDS with

some “isolated” edges; i.e., that are not attached to a DS

node, is O(∆2) because a relay node u needs to run once

over its neighbor set of size O(∆) and check for those of the

neighbors that are not DS nodes whether they have a non-DS

neighbor, and the neighbor set comparison again has O(∆)
complexity.

The second algorithm, EPEDS, first calculates an IEDS

and then connects it. To elaborate, during the IEDS creation

process, each node selects the highest-weight undominated

edge incident to it and adds it to the EDS (if any exist).

In order for the IEDS to be converted into a CEDS, each

node that belongs to a DS edge adds enough incident edges

(prioritized by the EclPCI of the one-hop neighbor at the

other end of the edge) to collectively dominate its two-

hop neighborhood. Finally, this algorithm uses a generic

pruning policy which recognizes and then removes redundant

edges with small weights from the CEDS. The details of the

algorithm are shown in Algorithm 2.

Proposition 3: The computation complexity of EPEDS

is O(∆3), where ∆ is the maximum node degree in the

network.

Proof: The worst-case construction phase of the EDS

results when a host u has ∆ neighbors and each one of

them has ∆ neighbors too. The adjacency matrix creation

and its subsequent population with the weight value w
edge
i,j of

each respective edge requires a node u to compare its 1-hop

and 2-hop neighbor set with O(∆2) neighbors in the worst

case, and the neighbor set comparison has O(∆) complexity.

Further, the computation complexity of electing an edge as

a DS edge is O(∆2), as a node u needs to compare its

1-hop neighbor set with ∆ neighbors in the worst case,

and the neighbor set comparison has a O(∆) complexity.

Connecting the EDS requires a host u to run once over its

neighbor set of size O(∆) and “erase” those nodes of the 2-

hop neighborhood of u (which has maximum size O(∆2))
covered by the specific neighbor. Finally, the computation

complexity of the pruning phase is O(∆3), because a node u

needs to calculate the coverage capability of a connected

graph composed of both 1-hop and 2-hop neighbors in order

to decide if it will act as a DS node or not. Thus, each

node u compares its neighbor set with ∆2 neighbors in the

worst case, and the neighbor set comparison has a O(∆)
complexity.

The third algorithm, NPEDS, uses the mechanics of

EPEDS to calculate the CEDS, and then uses the pruning

mechanism of CCEDS.

4058



The computational complexity of NPEDS is upper

bounded by O(∆3) where ∆ is the maximum degree in the

network. This can be proved by mixing the relevant parts of

the proofs of Propositions 2 and 3.

Algorithm 1: CCEDS

precondition : Known EclPCI index values of nodes in
(N(u)) ∧ (N2(u))

postcondition: Completed MCEDS election process
remarks : mlNetwork G =(V, E) where V and E are

vertex & edge set, R(u) : relay node set of

node u, M(u) / M(wedge
i,j ) : (T)rue/(F)alse

indicator for node u / edge w
edge
i,j being a

DS node / edge.
1 repeat
2 Add node l ∈ N(u) with largest EclPCI & which

covers at least one new node in N2(u) to R(u);
3 until each node in N2(u) is covered by node(s) in R(u)
4 Announce R(u);
5 if selected as a relay node then
6 M(u) = T ;
7 Announce status change;

8 Build Sconstrained
(u) = u1, u2, . . . , un | uk (1≤k≤n) ∈

N(u) ∧N2(u), M(uk (1≤k≤n)) = T ,
EclPCI(u) < EclPCI(uk (1≤k≤n));

9 if Sconstrained
(u) is subject to

N(u) ⊂ N(u1) ∪N(u2)... ∪N(un) and
u1, u2, ..., un form a connected graph then

10 M(u) = F ; Set M(w
edge
i,j ) = F any edge w

edge
i,j

incident to node u; /* CDS Pruning */

11 Announce status change;
12 Return;
13 end

14 Build S
edge

(u) = w
edge

u,l1
, w

edge

u,l2
, . . . w

edge

u,lm
|

w
edge

u,lk (1≤k≤m) ∈ E, lk ∈ N(u), M(lk) = F;

15 if ∃ w
edge

u,lk (1≤k≤m) ∈ S
edge

(u) adjacent to a non DS

edge and that edge is not incident to a DS node then

16 Add w
edge

u,lk (1≤k≤m) in the EDS ;

17 Announce status change;
18 end
19 end

IV. PERFORMANCE EVALUATION

Competing algorithms.

We compare the performance of the three proposed algo-

rithms, CCEDS, EPEDS, and NPEDS, across the various

aspects of the EA-MCMCEDS problem. Moreover, since

degree-based node dominating set construction could be

a viable technique, we developed WCEDS, which uses a

straightforward energy-aware generalization of degree cen-

trality [8] for multilayer networks, as a benchmark. WCEDS

uses the same mechanics as CCEDS to calculate the CEDS,

with the exception that the weighted degree centrality is used

in place of EclPCI.

Datasets.

Due to the lack of publicly available, real-world tactical

multilayer networks, we developed a generator for multilayer

weighted networks which is described in detail in [14]. The

construction of a multilayer network is controlled by the

average degree of each node, by the number of nodes per

Algorithm 2: EPEDS

precondition : Known EclPCI index values of nodes in
(N(u)) ∧ (N2(u))

postcondition: Completed MCEDS election process

1 Build edge adjacency matrix Emat
(u) with N(u) & N2(u);

/* ∃ e(i,j) ∈ E ⇐⇒ i ∈ N(j) ∧ j ∈ N(i) */

2 Add weights w
edge
i,j = EclPCI(i) ∗ EclPCI(j) to Emat

(u) ;

3 Build S
edge

(u) = w
edge

u,l1
, . . . , w

edge

u,lm
| w

edge

u,lk (1≤k≤m) ∈ E,

lk ∈ N(u);
4 if ∃ w

edge

u,lk (1≤k≤m) ∈ S
edge

(u) not attached to DS edge then

5 Select the edge with the largest weight and set

M(w
edge

u,lk (1≤k≤m)) = T ; /* EDS election */

6 Announce status change;
7 end
8 repeat
9 Select a node l ∈ N(u) with the largest EclPCI

index value that covers at least one new node in
N2(u);

10 M(l) = T; M(w
edge

u,l ) = T; /* CEDS process */

11 until each node in N2(u) is dominated by at least one DS
node in N(u)

12 Announce status of nodes in N(u);

13 Build S
edge

(u) = w
edge

u,l1
, . . . w

edge

u,lm
| w

edge

u,lk (1≤k≤m) ∈ E,

lk ∈ N(u), M(lk) = T;
14 repeat

15 if w
edge

u,lk (1≤k≤m) is dominated by connected wedge ∈

Emat
(u) with larger weight then

16 M(wedge

u,lk (1≤k≤m)) = F ; /* EDS Pruning

*/

17 Announce status change;
18 end

19 until each w
edge

u,lk (1≤k≤m) ∈ S
edge

(u) has been considered

layer (i.e., size of the layer), the diameter of each layer,

and the number of layers. We apply four distinct Zipfian

distributions, one per parameter of interest, controlled by the

skewness parameter s of the respective Zipfian distribution:

• sdegree ∈ (0, 1): to generate the frequency of highly

interconnected nodes; therefore the degree distribution

is Zipfian.

• slayer ∈ (0, 1): to choose how frequently a specific

layer is selected; therefore the layer IDs collectively as

edge anchors follow a Zipfian distribution.

• snode ∈ (0, 1): to choose how frequently a specific node

is selected in a specific layer; therefore the distribution

of node IDs as edge endpoints is Zipfian.

• sweight ∈ (0, 1): to choose how energy is distributed to

nodes; therefore the energy distribution is Zipfian.

We selected a default setting for each of the parameters,

calling them collectively the skewness. We represent them as

a sequence of four floats, e.g., 0.5− 0.5− 0.5− 0.5, which

means that sdegree = 0.5, slayer = 0.5, snode = 0.5 and

sweight = 0.5 (the default settings we used to create the

datasets). Table I records all the independent parameters of

our topology generator.
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parameter range default

avg. node degree (D) 3, 6, 10, 15, 20 6

network diameter (H) 3, 5, 8, 12, 17 8

#network layers (L) 2, 3, 4, 5, 7 4

TABLE I

EXPERIMENTATION PARAMETERS VALUES.

A. Results

We performed a simulation-based performance evaluation

of the competing algorithms in MATLAB. We include IEDS

in the plots as a benchmark, but do not comment on its

performance because it does not create a CEDS.

In Figs. 2-4, we plot the performance of the competitors

in terms of the goals of the EA-MCMCEDS problem as

the mean degree, diameter, and number of layers of the

synthetic multi-layer network is varied. In these figures, the

first row of histograms show the size of the CEDS that each

algorithm creates, which is measured as a percentage of the

total edges in the network, while the second row plots show

the percentage of all the inter-layer links that are included

in the CEDS. An ideal algorithm will minimize the former,

while maximizing the latter. The third row of plots show the

energy distribution of the vertices selected for the overlay,

plotting their mean energy with associated error bars, while

the fourth row of plots show the number of overlay nodes.

An ideal algorithm would cover the network using relatively

few, high-energy nodes, so it would maximize the third row

of plots while minimizing the fourth.

1) Impact of topology density: In Fig. 2, we consider

the impact of topology density on each competitor’s perfor-

mance. In the top row, we evaluate the size of the EDS that

each competitor creates. We first observe that the size of the

EDS is almost a decreasing function of node density, as in

higher network densities, each node will participate in more

edges, and each edge can thus dominate more edges. It is

interesting that both CCEDS and WCEDS manage to create

the smallest MCEDS (approximately 2.0 up to 2.1 times the

size of IEDS) regardless of how sparse or dense the network

is. On the other hand, EPEDS and NPEDS create the largest

EDSs for mean degrees 3 and 6 (with > 60% and > 50%
more edges, respectively), while they perform close to the

other heuristics for larger mean degrees. The best performing

algorithms in sparse and medium density networks start

with an MCDS in creating an MCEDS, which means that

they can start from much sparser overlay sets compared to

methods that require the creation of a CEDS from the start, as

without coordination, many edges are needed for domination

in sparse networks.

In the second row, we see that CCEDS and NPEDS

include more inter-layer links than competitors, with perfor-

mance levels that do not change much with network density.

On the other hand, while EPEDS is the best performing

algorithm when mean degree = 3, its performance drops

drastically for larger mean degrees. WCEDS also has a

similar, yet less drastic, performance drop. This is because

EclPCI, as used by CCEDS and NPEDS enables these

algorithms to privilege inter-layer links for inclusion in
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Fig. 2. Impact of network density on the performance of each competitor.

the CEDS, while WCEDS is layer-agnostic. The surprising

drop in performance for EPEDS is due to its edge-pruning

mechanism (as opposed to the node-pruning mechanism of

CCEDS/NPEDS), which increases the likelihood of pruning

inter-layer links: as the probability of the existence of a

dominating edge in either of the linked layers increases with

the mean degree, and the probability of self-deselection by

the inter-layer edge in the pruning phase also increases.

In the third row, we see that CCEDS, on average, leads to

a 3−5% increase in overlay node energies in sparse networks

(mean degrees 3 and 6) compared to the other competitors.

This difference levels out at higher densities, except with the

worst-performing WCEDS. This is tightly coupled with the

arguments around the size of the selected EDS presented for

the first row - CCEDS chooses fewer, yet more central and

higher energy edges in sparse networks precisely because it

does not impose creating a CEDS from the first step.

In the last row, we plot the relative size of the overlays.

Interestingly, and counter-intuitively, we see that the overlay

size grows with the mean degree. We may expect that a

denser network could be dominated by fewer overlay nodes.

However, the number of edges in a network grows with

the edge density, and as we are seeking to build an edge-

dominating set, the number of overlay nodes also grows. In

this aspect as well, CCEDS, NPEDS, and WCEDS perform

best, with EPEDS’s edge-based pruning leading to a > 14%
and > 6% handicap for mean degrees 3 and 6.

2) Impact of network diameter: In Fig. 3, we consider

the impact of network diameter on each competitor’s per-

formance. In the top row, we observe that the size of the

constructed EDS increases with the network diameter for

all algorithms. This is the result of sparser neighborhoods,

i.e., fewer links between network nodes. In other words,

there are fewer, longer (in hops), and less distinct paths

in the multilayer network, which leads to the election of

a large number of edges for the EDS. Except for the worst-

performing EPEDS (whose size goes from 29% larger than

the best competitor when diameter = 3 up to 82% larger

when diameter = 17) all the algorithms lead to similar EDS

sizes. The pruning mechanism of EPEDS is responsible for

its bad performance.
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Fig. 3. Impact of network diameter on the performance of each competitor.

From the second row of plots, we see that CCEDS and

NPEDS perform best overall with regards to the number

of the EDS interlinks, with the relative number of EDS

interlinks staying stable as the diameter is varied. This means

that they both work well in bushy (small number of hops)

or skinny (large number of hops) networks. EPEDS, on the

other hand, performs remarkably well for larger network

diameters, while performing poorly when diameter = 3
(where it includes less than the half number of interlinks

in the EDS compared to CCEDS). For example, EPEDS

creates an overlay with > 45% more interlinks compared

to CCEDS and NPEDS when diameter = 12 or 17, yet

this comes at the cost of a much larger EDS size, which

is unacceptable. WCEDS, the layer-agnostic baseline, only

reaches the respective performance of the other algorithms

in terms of interlinks when diameter = 17, while having

much fewer interlinks for more bushy networks. So, while

WCEDS performs well in terms of EDS size for bushy

networks, this is traded off against the lower resiliency of

the resulting overlay. Note that the number of the interlinks

that are included in the EDS by each algorithm is a direct

consequence of the pruning mechanism they employ, and

more precisely, how well each of them can distinguish

between a simple edge and an interlink.

From the third row of plots, we see that all the algorithms

lead to overlays with similar average energy levels and there

is no clear winner. However, for medium-to-large network

diameters (when it equals 8, 12 and 17) both CCEDS and

NPEDS select nodes with slightly more energy (on average)

into the overlay (showing a 3.5–10% improvement).

Interestingly, in the last row of plots, we see that the

DS size decreases significantly for all the competitors when

diameter = 12 and 17. This arises from the fact that the

multilayer network is created from the interconnection of

sparse and skinny networks in these settings. In such a

case, the DS nodes are shared between many EDS edges.

Most of the algorithms lead to similar DS sizes, except for

EPEDS which leads to 3.5% (when diameter= 3) to 18.0%

more nodes in the DS. This is due to its inefficient pruning

mechanism.

3) Impact of the number of layers: In Fig. 4, we consider

the impact of the number of network layers on each com-

petitor’s performance. From the top row of plots, we see that

for the majority of the algorithms (all except EPEDS), the

number of edges in the EDS decreases with an increase in

the number of the multilayer network layers, leading to EDS

selections approximately 2.0–2.4 times the size of the IEDS,

because of the richer connectivity among layers’ hub nodes

imposed for the specific value(s) of Zipfian distribution(s).

We also observe that all competitors lead to similar size EDS

selections, except for EPEDS whose EDS is 30% larger than

the rest.
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Fig. 4. Impact of number of layers on the performance of each competitor.

.

From the second row of plots, we observe that the number

of EDS interlinks decreases as the number of layers in-

creases. This is because it is increasingly difficult for all the

algorithms to distinguish between interlayer and intralayer

edges when the total number of edges increases (a by-product

of the increase in the number of layers). However, both

CCEDS and NPEDS manage to confront this problem more

efficiently than the competition when we have 2-layer and 3-

layer networks, with both having at least 25% and 38% more

interlinks in the EDS than the competition, respectively. This

is because EclPCI can improve the ability of an algorithm

to distinguish between interlinks and intra-layer edges. It

is interesting to note that the relative differences in the

number of interlinks chosen by the competitors does not

change with the number of network layers, except in the

case of the 7-layer network, in which EPEDS chooses a

relatively large number of interlinks in its relatively large

EDS. Again, WCEDS has the worst performance among the

competitors in this aspect due to its layer-agnostic nature,

except for the 2-layer network where it performs 12% better

than EPEDS.

In the third row of plots, we see that both CCEDS and

NPEDS create overlays with the most average energy per

node irrespective of the number of network layers. Interest-

ingly, the number of network layers has no effect on the

relative differences in the performance of the competitors.

Finally, in the bottom row of plots, we observe that the

percentage of nodes included in the DS does not change
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with the number of network layers for the majority of the

competitors. Once again, the exception is EPEDS, for which

the number of DS nodes increases with the number of layers.

4) Energy analysis of the overlay: In Fig. 5, we analyze

the (average) energy levels of the core, periphery, and

non-members of the overlay along with the size of the

EDS for the competing algorithms, in order to illustrate

the tradeoff between picking only high-energy nodes and

providing sufficient coverage. Each bar has three colored

segments: a pink segment corresponding to core overlay

nodes, a light orange segment corresponding to peripheral

overlay nodes, and a light green segment corresponding to

non-members of the overlay. The height of each colored

segment represents the percentage of nodes belonging to that

node class; therefore, the sum of the heights of the segments

is 100%. The number superimposed within each colored

segment depicts the average energy of the nodes belonging

to that class.
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Fig. 5. Energy levels (average) of the core, periphery, and non-members
of the overlay along with the size of the EDS.

An algorithm will be efficient in terms of overlay size

if the total height of the associated pink and the light

orange segment is small relative to its competitor(s). We

observe from the plots (which vary the number of layers,

the diameter, and the mean degree) that CCEDS produces

the smallest overlay in (almost) all cases, as observed in

earlier figures as well.

An algorithm is efficient in terms of energy, primarily if

the average energy of its core overlay nodes (superimposed

number of the pink segment) is high and the average energy

of the overlay’s non-members (super-imposed number over

the light green segment) is low. We observe that on average,

CCEDS’s core overlay nodes have higher energy than those

of their competing algorithms and outperform the second-

best algorithm, NPEDS, by around 4% in some cases.

However, NPEDS has quite similar performance to CCEDS

in general, and is slightly superior to CCEDS for networks

with very small diameter (1.5% improvement).

V. CONCLUSIONS

We considered distributed methods of creating a

minimum-size overlay network of monitoring devices over

a wireless multilayer ad hoc network. We emphasized the

overlay network’s resilience to correlated layer failures and

to energy depletion in devices, paying special attention to

inter-layer links, and formalized the problem in terms of

edge dominating sets (EDS) in multilayer networks (EA-

MCMCEDS).

We proposed three distributed algorithms for solving EA-

MCMCEDS, namely CCEDS, EPEDS, and NPEDS. CCEDS

creates a connected EDS by first starting from a node dom-

inating set, whereas the other two start from an independent

EDS. All employ smart pruning heuristics to reduce the

size of the resulting connected EDS. We compared their

performance, along with that of a baseline competitor, using

extensive simulations varying network topological charac-

teristics and energy distribution patterns in synthetic multi-

layer networks. CCEDS was, by far, the best performing

algorithm in terms of EDS cardinality, layer-based resilience,

and energy composition in (almost) all cases.

While our heuristics performed well over a range of

scenarios, investigating the approximability of the EA-

MCMCEDS problem is an important line of future work.
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