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ABSTRACT
This article introduces the concept of SinkGroupNode Betweenness

centrality to identify those nodes in a network that can “monitor"

the geodesic paths leading towards a set of subsets of nodes; it

generalizes both the traditional node betweenness centrality and

the sink betweenness centrality. We also provide extensions of

the basic concept for node-weighted networks, and also describe

the dual notion of Sink Group Edge Betweenness centrality. We

exemplify the merits of these concepts and describe some areas

where they can be applied.
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design and evaluation methods; Social network analysis; So-
cial engineering (social sciences).
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1 INTRODUCTION
The dramatic growth of online social networks during the past

fifteen years, the evolution of Internet of Things and of the emerging

Internet of Battlefield Things, the extensive study and recording of

large human social networks is offering an unprecedented amount

of data concerning (mainly) binary relationships among ‘actors’.

The analysis of such graph-based data becomes a challenge not

only because of their sheer volume, but also of their complexity

that presents particularities depending on the type of application

that needs to mine these data and support decision making. So, the

field termed network science has spawned research in a wide range

of topics, for instance: a) in network growth, developing models
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such as the preferential attachment [4], b) in new centrality mea-

sures for the identification of the most important actors in a social

network developing measures such as the bridging betweenness

centrality [28], c) in epidemics/diffusion processes [18], d) in finding

community structure [21, 22], i.e., finding network compartments

which comprise by sets of nodes with a high density of internal

links, whereas links between compartments have comparatively

lower density, e) in developing new types of networks different from

static and single-layer networks, such temporal [39] and multilayer

networks [9], and of course analogous concepts for these types

of networks such as centralities [26], communities [27], epidemic

processes [5], and so on.

Despite the rich research and the really large number of concepts

developed during the past twenty years and the diverse areas where

is has been applied e.g., ad hoc networking [30], the field of network

is continuously flourishing; the particular needs of graph-data

analytics create the need for diverse concepts. For instance, let us

examine a very popular andwell-understood concept in the analysis

of complex networks which is the notion of centrality [3, 34, 41],

being either graph-theoretic [23], or spectral [33] or control theo-

retic [29]. Betweenness centrality [23] in particular has been very

successful and used for the design of effective attacks on network

integrity, and also for discovering good “mediators" (nodes able to

monitor communication among any pair of nodes in a network),

but it is not effective in identifying influential spreaders; for that

particular problem k-shell decomposition [31] proved a much better

alternative. However subsequent research [11] proved that a node’s

spreading capabilities in the context of rumor spreading do not

depend on its k-shell index, whereas other concepts such as the

PCI index [6] can perform better. So, our feeling is that the field

of network science, even some very traditional concepts such as

betweenness centrality could give birth to very useful and practical

variants of them.

Let us describe a commonly addressed problem in network

science concerning malware spreading minimization problem. In

particular, we are given a set of subsets of computer nodes that

we need to protect against a spreading malware which has already

infected some nodes in the network, but we only have a limited

number of vaccines (i.e., a “budget") to use. If we had to select some

healthy (susceptible) nodes to vaccinate, then which would these

nodes be? Our decision would of course depend on the infection

spreading model, but usually routing in computer networks imple-

ments a shortest-path algorithm. So can the traditional shortest-

path node betweenness centrality [23] help us to identify such

nodes?

Additionally, we will describe a similar problem that a modern

army could possible face due to the rapid deployment of Internet of

Battlefield Things [43]. The army needs to destroy by jamming the

communications towards a set of subset of nodes of the enemy, but
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it has available only a limited number of jammer or time to deploy

them. The question is now which links should the army select

to attack? So can the traditional shortest-path edge betweenness

centrality [15] help us to identify such links?

The answer to previous questions is negative, because node/edge

betweenness centrality calculates the importance of a node/edge

lying on many shortest paths connecting any pair of network

nodes, whereas in our problems we are interested in paths leading

towards specific sets of subsets of network nodes. Starting from this

observation, in this article we introduce the generic concept of sink-
group betweenness centrality which can be used as a building block

for designing algorithms to address the aforementioned problems.

The aim of the present article is to introduce the new central-

ity concept for various types of complex networks and also to

present some potential uses of it for solving some network science

problems. In this context, the present article makes the following

contributions:

• it introduces a new centrality measure, namely the sink

group node betweenness centrality;

• it extends the basic definition for networks weighted on the

nodes;

• it extends the basic definition for the case of edge between-

ness;

• it presents basic algorithmic ideas for calculating the afore-

mentioned notions.

The rest of the article is structured as follows: Section 2 presents

the articles which are closely related to the present work; Section 3

defines the sink group betweenness centrality concept, and in

Section 4 we provide a detailed example to exemplify the strengths

of the new concept. Then, in Sections 5 and 6 we present the

definitions of sink-group betweenness centrality for node-weighted

networks and edge sink group betweenness centrality, respectively.

Finally, Section 7 discusses a list of applications and Section 8

concludes the article.

2 RELATEDWORK
Betweenness Centrality.

The initial concept of (shortest path) betweenness centrality [23]

gave birth to concepts such as the proximal betweenness, bounded-

distance betweenness and distance-scaled betweenness [13], bridg-

ing centrality [28] to help discover bridging nodes, routing between-

ness centrality [16] to account for the paths followed by routed

packets in a networks, percolation centrality [38] to help measure

the importance of nodes in terms of aiding the percolation through

the network. There are so many offsprings of the initial concept,

that even a detailed survey would found practically impossible to

record each one published!

The realization that the computation of betweenness centrality

requires global topology knowledge and network-wide manipula-

tion, which is computationally very expensive, spawned research

into distributed algorithms for its computation [10], and inspired

variants aiming at facilitating the distributed computation of no-

tions similar to the original betweenness centrality, such as load

centrality [36].

Betweenness centrality and its variations have found many

applications not only in classical fields in network mining, but also

in delay-tolerant networks [37], ad hoc networks [30], in distributed

systems e.g., for optimal service placement [42], etc.

Approximate Betweenness Centrality.
Many applications working over modern networks require the

calculation of betweenness centrality in nearly a real-time fashion

or have to deal with a huge number of nodes and edges. So, the

decision of trading off the accuracy of betweenness centrality

computation with speed arises as a natural option. Some early

works considered approximating the exact values of betweenness

centrality [2, 24]. Later on, this became a very active research

field [10]; a survey can be found at [40].

Group Betweenness Centrality.
Group betweenness centrality indices [19] measure the impor-

tance of groups of nodes in networks, i.e., they measure the per-

centage of shortest paths that pass through at least one of the nodes

of the group. On the other hand, co-betweenness centrality [32]

measures the percentage of shortest paths that pass through all

vertices of the group.

Algorithms for fast calculation of these group centrality mea-

sures have been developed [14, 44] even for diverse types of net-

works [35]; group (co-)betweenness or their variations have found

applications in monitoring [17], in network formation [8], etc.

Sink Betweenness Centrality.
The notion of Sink Betweenness centrality [45], which is a

specialization of our Sink Group Betweenness Centrality, was de-

veloped in the context of wireless sensor network to capture the

position of nodes which lie in many paths leading to a specific

node, i.e., the sink. So, the sink betweenness of a sensor node was

correlated to the energy consumption of than node, since it had to

relay a lot of messages towards the sink node.

3 THE SINK GROUP BETWEENNESS
CENTRALITY

We assume a complex networkG(V ,E) consisting of n nodes, where

V = {vi , 1 ≤ i ≤ n} is the set of nodes and E = {(vi ,vj ), i, j ∈

V } is the set of edges. We make no particular assumptions about

the network being directed or undirected; this will be handled

seamlessly by the underlying shortest-path finding algorithm. We

assume that the network is unweighted, that is, neither the nodes

nor the edges carry any weights; however, the former assumption

will be reconsidered in Section 5.

Recall that the goal of sink group betweenness centrality is to

discover which nodes lie in many paths leading towards a partic-

ular set of designated nodes. To achieve our purpose we combine

the concepts of Group Betweenness (GBC) [32] (although in a

different fashion than in the initial definition) and the concept of

Sink Betweenness (SBC) [45]. In the following we will define the

measure of Sink Group Node Betweenness Centrality (SGBC), but

firstly we will remind to the reader some definitions.

Recall that the Shortest Path Betweenness (SPBC) Centrality

is defined as follows
1
:

Definition 3.1 ((Shortest Path) Betweenness Centrality [23]). The
(Shortest Path) Betweenness Centrality (SPBC) of a node v is the

1
When using the term “betweenness centrality" we refer to the concept of node

betweenness centrality. When we wish to refer to the “edge betweenness centrality"

we will explicitly make use of this term.
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fraction of shortest paths between any pair of nodes that v lies on.

Equation 1 calculates the SPBC of node v .

SPBC(v) =
n∑
i=1

n∑
j=1

i,j,v

σi j (v)

σi j
(1)

whereσi j is the number of shortest paths from node i to j , andσi j (v)
is the number of shortest paths from i to j where node v lies on.

This is the non-normalized version of betweenness centrality, i.e.,

we do not divide by the total number of node pairs.

Definition 3.2 (Sink Betweenness Centrality [45]). The Sink Be-

tweenness Centrality (SBC) of a node v is the fraction of shortest

paths leading to a specific sink node s , that v lies on. Formally, we

provide Equation 2 for calculating the SBC of node v .

SBC(v) =
n∑
i=1

i,s,v
s is the sink node

σis (v)

σis
(2)

Apparently, SBC is a specilization of SPBC i.e., j does not
iterate over all nodes of the network but it is kept fixed and coincides

with the sink node s (j ≡ s).
Suppose now that there is some “abstract grouping" process

that defines non-overlapping clusters of nodes over this network.

In principle, we do not need to apply any grouping algorithm at

all, but we can assume that some application selects the members

of each cluster as part of our input. The union of these clusters

may not comprise the whole complex network. We expect that

Usually the size of the aggregation of all these clusters comprises

a small fraction of the complex network. Let us assume that we

have defined z non-overlapping clusters, namely C1,C2, . . . ,Cz
with cardinalities |C1 |, |C2 |, . . . , |Cz |, respectively. Then, the Sink
Group Betweenness Centrality is defined as follows:

Definition 3.3 (Sink Group Betweenness Centrality). The Sink

Group Betweenness Centrality (SGBC) of a node v is the fraction

of shortest paths leading to any node, which is a member of any

designated cluster, that v lies on. Formally, we provide Equation 3

for calculating the SGBC of node v .

SGBC(v) =
n∑
i=1

∑
j ∈∪zk=1Ck
v<∪zk=1Ck

σi j (v)

σi j
(3)

where n is the number of nodes, Ck is the k-th cluster, σi j is the
number of shortest paths from node i to j , and σi j (v) is the number

of shortest paths from i to j where node v lies on.

Intuitively, a node has high Sink Group Betweenness Centrality

if it sits in many shortest paths leading towards nodes belonging

to any group.

Definition 3.3 requires that the node whose SGBC we calculate

is not part of any existing cluster. This is not mandatory in general,

but since we are looking for nodes which can act as mediators in the

communication with the clusters’ nodes, it makes sense to exclude

the clusters’ nodes from being considered as potential mediators.

By removing this constraint, we get the concept of Generalized
SGBC, but in this article we consider it to be equivalent to the

plain SGBC.

We have considered unweighted and undirected complex net-

works. The extension of the definition of Sink Group Betweenness

Centrality for directed networks is straightforward, because it is

handled by the path finding algorithm. On the other hand, the

extension to node or edgeweighted networks is less straightforward

and we will provide some ideas in a later section.

3.1 SGBC versus its closest relatives
SGBC has as its special cases the concepts of betweenness cen-

trality and of sink betweenness centrality. In particular, SGBC is

related to its closest relatives as follows:

• Clearly, SGBC is related to the SPBC in the following

way: when the union of all clusters comprises the whole

network, then Generalized SGBC and SPBC coincide.

• Moreover, SGBC is a generalization of SBC in the follow-

ing way: when we have only one cluster which contains a

single node, then SGBC and SBC coincide.

• At this point we need to make clear the difference between

Group Betweenness Centrality [20] and SGBC; the former

seeks for the centrality of a group of nodes with respect to the

rest of the nodes of the network, whereas the latter seeks for

the centrality of a single node with respect – not the nodes

of the whole network but – to the nodes belonging to some

groups (clusters). Apparently, we can generalize Definition 3.3
and Equation 3 to follow the ideas of [20].

4 EXEMPLIFYING THE MERIT OF SGBC

Let us now look at the small complex network of Figure 1. This net-

work represents a collection of communicating nodes administered

by an overseeing authority. We have no weights on links, but we

have denoted the nodes that are mostly important for the authority

– and thus must be protected better – with red color. We have not

designated any attacker or attacked node in the figure, because in

many situations the attack might be known where it will initiate.

W

Green: Node(s) with high Sink Group Betweenness Centrality

Purple: Node(s) with high Sink Betweenness Centrality

A1

A2

A3

Y

Z

X

U

V

Group−1

Group−2

Red: Node(s) which are our target

Pink: Groups of (target) nodes

Figure 1: Illustration of Sink Group Betweenness Centrality.
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Suppose that this authority is interested in investing a limited
amount of money to buy hardware/software to equip some nodes with
hoping that these will protect the significant ones, e.g., by stopping

any cascade of infections. Let us call such nodes safeguarding
nodes. Moreover, it is obvious that the authority needs to identify a

limited number of safeguarding nodes, due to the limited budget. So,

how we identify safeguarding nodes by exploiting the topological

characteristics of the complex network?

The obvious solution is to look at the one-hop neighbors of the

safeguarding nodes. Then, we can make use of the SBC [45] and

say that the purple node (Y ) is a safeguarding node. The purple node
sits on many shortest paths towards the red node A1 (Group-1). In
this way, we can select the set of nodes {V ,W ,Y } as safeguarding
nodes.

When the constraint of reducing the cardinality of this set comes

into play, then we must somehow group safeguarding nodes, and

seek for safeguarding nodes which are close to each group or to

many groups. (This tradeoff with be analysed in the sequel.)

Concerning the structure of groups, we have the following char-

acteristics:

• Clusters might contain only one node.

• Nodes comprising a cluster need not be one-hop neighbors.

SBC is of no use anymore, but we can use the concept ofSGBC

defined earlier. Using this concept, the green node X has high Sink

Group Betweenness Centrality because it sits on many shortest

paths towards the two red nodes A2 and A3 comprising Group-2.

Notice, here that the nodes with high SGBC are not correlated to

nodes with high SPBC; for instance, the node with the highest

SPBC in the network is nodeZ (it is an articulation point or bridge

node).

Now let us look at the impact of safeguarding nodes’ grouping

on the existence (and/or SGBC value) of safeguarding nodes. As

said earlier, the grouping creates the following tradeoff: the larger

the groups we define, the less the nodes (if any) with high Sink

Group Betweenness Centrality we can find.

If we unite Group-1 and Group-2 into a single group and ask the

question ‘which node(s) sit in many shortest paths towards ALL

members of this new group’, then we can safely respond that only

node Z is such a node, because of the particular structure of the

network of Figure 1. Recall that node Z is a bridge node, thus all

shortest paths from the right of Z to nodes A2 and A3 will pass

via Z , and all shortest paths from the left of Z towards nodeA1 will
pass via Z .

If we now examine Figure 2, and consider initially a grouping

comprised by two groups, i.e., Group-1 and Group-2, then we can

clearly identify the two green nodes as those with the highest

SGBC. If we create a single large group comprised by all red

nodes, then we can not find any node with high enough SGBC

to act as safeguarding nodes. For this grouping, the blue nodes

have also SGBC comparable to that of green nodes. Thus, with

this grouping the identification of safeguarding nodes becomes

problematic.

4.1 Calculation of SGBC

The calculation of SGBC can be carried out using as basis the

Dijkstra’s algorithm. Algorithm 1 is a baseline one:

X
Y

Green: Nodes with high SGBC with respect to the initial grouping

Group−1 Group−2

Purple: New grouping (all red nodes into the same group)

New grouping (larger)

Pink: Initial grouping of target nodes

Red: Node(s) which are our target

Figure 2: Impact of grouping on Sink Group Betweenness
Centrality.

Algorithm 1: Calculation of SGBC.

1 for each node s ∈ ∪zk=1Ck to j ∈ {V − ∪zk=1Ck } do
2 SPs = Dijkstra to find shortest-path from s → j;

3 SP = ∪∀sSPs ;
4 for each path p ∈ SP do
5 Use a hash table to group paths based on start-end;

6 for each hash table bucket do
7 Use a hash table to accumulate node appearance in

paths;

Proposition 4.1. The worst-case computational complexity of
Algorithm 1 isO(| ∪zk=1 Ck | × n2), where n is the number of network
nodes.

Proof. Assuming a network with n nodes andm edges, and an

implementation
2
of Dijkstra’s algorithm that costs O(n2 +m), i.e.,

O(n2), then Lines 1–2 cost O(| ∪zk=1 Ck | × n2); lines 3–5 cost O(n2)

since there are at most n2 paths, and lines 6–7 cost O(n2). □

For unweighted and undirected networks, we can design a faster

algorithm along the ideas of breadth-first traversal and the algo-

rithm by Brandes [12], but this is beyond the scope of the present

article.

5 SGBC WITH NODEWEIGHTS
Now suppose that each node has a weight associated with it (e.g.,

depicting its trustworthiness, its balance in a transaction network,

etc), then we need to define the SGBC in such a way that it will

take into account these weights. Note that this is different from

having weights in edges (i.e., a weighted network) because that

2
There are various implementations with even smaller cost utilizing sophisticated data

structures or taking advantage of network sparsity.
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weights are handled by the shortest-path finding algorithm. We can

have the following options:

• We can apply the straightforward idea of multiplying by a

node’s weight as in [1], i.e.,

SGBCnw (v) = node_weiдht(v) ×
n∑
i=1

∑
j ∈∪zk=1Ck
v<∪zk=1Ck

σi j (v)

σi j
(4)

with appropriate normalization in the interval [0 . . . 1] for

both node’s weight and SGBC.

• Apply standard procedures for turning the problem of find-

ing shortest paths in networks with weights on edges and/or

nodes into a shortest path finding problems with weights

only on edges. The methods are the following (n - number

of nodes,m - number of edges):

– We can split each node apart into two nodes as follows:

for any node u, make two new nodes, u1 and u2. All edges
that previously entered node u now enter node u1, and all

edges that leave node u now leave u2. Then, put an edge

between u1 and u2 whose cost is the cost node u1. In this

new graph, the cost of a path from one node to another

corresponds to the cost of the original path in the original

graph, since all edge weights are still paid and all node

weights are now paid using the newly-inserted edges.

Constructing this graph can be in time O(m + n), since
we need to change each edge exactly once and each node

exactly once. From there, we can just use a normal Dijk-

stra’s algorithm to solve the problem in timeO(m+nloдn),
giving an overall complexity of O(m + nloдn). If negative
weights exist, then we can use the Bellman-Ford algorithm

instead, giving a total complexity of O(mn).
– Alternatively, we can think as follows: since we have both

edges and nodes weighted, when we move from i to j , we
know that total weight to move from i to j is weight of
edge(i → j) plus weight of j itself, so lets make i → j
edge weight sum of these two weights and the weight of

j zero. Then we can find shortest path from any node to

any other node to in O(mloдn).
• We can multiply each fraction (of shortest paths) in the

summation formula with the minimum weight (positive or

negative) found along the path.

6 SINK GROUP EDGE BETWEENNESS
CENTRALITY

The plain edge-betweenness centrality measure is used to identify

the edges which lie in many shortest-paths among pair of network

nodes. It has been widely used in network science and not only,

e.g., for discovering communities in networks [25], for designing

topology control algorithms for ad hoc networks [15], etc.

In our context, we ask the question whether we can identify the

edges which lie in many paths towards a set of subsets of network

nodes. The extension of SGBC to the case of edges is easy. Thus,

the Sink Group Edge Betweenness Centrality is defined as follows:

Definition 6.1 (Sink Group Edge Betweenness Centrality). The
Sink Group Edge Betweenness Centrality (SGEBC) of an edge

e is the fraction of shortest paths leading to any node, which is

a member of any designated cluster, that e lies on. Formally, we

provide Equation 5 for calculating the SGEBC of edge e .

SGEBC(e) =
n∑
i=1

∑
j ∈∪zk=1Ck
v<∪zk=1Ck

σi j (e)

σi j
(5)

where n is the number of nodes, Ck is the k-th cluster, σi j is the
number of shortest paths from node i to j , and σi j (e) is the number

of shortest paths from i to j where edge e lies on.

7 APPLICATIONS OF SGBC

7.1 SGBC and influence minimization
We have already explained in the introduction how sink group

betweenness centrality can be used to limit the spreading in the

context of influence or infection minimization problems under

budget constraints. Especially relevant becomes for those prob-

lems that are online [7], i.e., require a continuous combat against

the spreading while the infection evolves in various parts of the

network.

7.2 SGBC and virtual currencies networks
Let us now look again at the network of Figure 1, but this time

assume that the graph represents a network of transactions being

made using a virtual currency, e.g., a community currency [46],

which – differently from BitCoin – is administered by an overseeing

authority. We have denoted the nodes in deficit (i.e., with lack of

virtual money) with red color.

Suppose that this authority is interested in injecting a limited

amount of money into some nodes with the hope that these nodes

will buy something from the red nodes and therefore with reduce

their deficit. Let us call such nodes deficit balancers. Suppose that
the authority needs to identify a limited number of deficit balancers,

otherwise will have to divide this amount of money into too many

deficit balancers, and eventually an even smaller amount of money

will end up to the nodes with deficit. So, how we identify deficit

balancers?

Exactly as before, the obvious solution is to look at the one-hop

neighbors of the deficited nodes. Then, we can make use of the

SBC and say that the purple node (Y ) is a deficit balancer. The

purple node sits on many shortest paths towards the red node A1
(Group-1). In this way, we can select the set of nodes {V ,W ,Y }
as deficit balancers. If the authority is constrained to reduce the

cardinality of this set, then we must seek for deficit balancers which

are close to each group or to many groups. From this point, we can

continue along the same reasoning as we did in Section 4.

7.3 SGBC and community finding
The concept of SGEBC can be used as a component of an algo-

rithm for discovering the community where a particular set of

nodes belongs. The idea is that if this collection of nodes is relative

close to each other, then repeated deletion of high SGEBC edges

will gradually isolate this community of nodes from the rest of the

network nodes.
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8 CONCLUSIONS
Network science continues to be a very fertile research and de-

velopment area. The more our world becomes connected via 5G

and Internet of Things (or Everything), the more network science

evolves into a precious tool for graph-data analysis. One of the

central concepts in this field, namely centralities despite counting

half a century of life, is still hot giving new definitions, and new

insights into the networks’ organization. In this article, we intro-

duced a new member into the family of shortest path betweenness

centralities, namely sink group betweenness centrality. The purpose

of this measure is to identify nodes which are in positions to

monitor/control/mediate the communication towards subsets of

networks nodes. We provided a simple algorithm to calculate this

measure, and also extended it for node-weighted networks, and

also for the case of edge betweenness. This effort is simply out

first step in a long journey to develop efficient algorithms for the

calculation of these measures, to analyze its distribution in real

networks, to extend them to consider sink group betweenness

centrality computed for a collections of network nodes, and develop

techniques for approximating them.
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