
Cache Management for Web-Powered Databases 201

Chapter VIII

Cache Management for
Web-Powered Databases

Dimitrios Katsaros and Yannis Manolopoulos
Aristotle University of Thessaloniki, Greece

Copyright © 2003, Idea Group Publishing.

ABSTRACT
The Web has become the primary means for information dissemination. It is
ideal for publishing data residing in a variety of repositories, such as
databases. In such a multi-tier system (client - Web server - underlying
database), where the Web page content is dynamically derived from the
database (Web-powered database), cache management is very important in
making efficient distribution of the published information. Issues related to
cache management are the cache admission/replacement policy, the cache
coherency and the prefetching, which acts complementary to caching. The
present chapter discusses the issues, which make the Web cache management
radically different than the cache management in databases or operating
systems. We present a taxonomy and the main algorithms proposed for cache
replacement and coherence maintenance. We present three families of predictive
prefetching algorithms for the Web and characterize them as Markov predictors.
Finally, we give examples of how some popular commercial products deal with
the issues regarding the cache management for Web-powered databases.

INTRODUCTION
In the recent years the World Wide Web or simply the Web (Berners-Lee,

Caililiau, Luotnen, Nielsen & Livny, 1994) has become the primary means for
information dissemination. It is a hypertext-based application and uses the HTTP
protocol for file transfers. What started as a medium to serve the needs of a specific

202 Katsaros & Manolopoulos

scientific community (that of Particle Physics), has now become the most popular
application running on the Internet. Today it is being used for many purposes, ranging
from pure educational to entertainment and lately for conducting business. Applica-
tions such as digital libraries, video-on-demand, distance learning and virtual stores,
that allow for buying cars, books, computers etc. are some of the services running
on the Web. The advent of the XML language and its adoption from the World Wide
Web Council as a standard for document exchange has enlarged many old and fueled
new applications on it.

During its first years the Web consisted of static HTML pages stored on the file
system of the connected machines. When new needs arose, such as the E-
Commerce or the need to publish data residing in other systems, e.g., databases, it
was realized that we could not afford in terms of storage to replicate the original data
in the Web server’s disk in the form of HTML pages. Moreover, it would make no
sense to replicate data that would never be requested. So, instead of static pages, an
application program should run on the Web server to receive the requests from
clients, retrieve the relevant data from the source and then pack them into HTML or
XML format. Even the emerged “semistructured� XML databases, which store
data directly into the XML format, need an application program which will connect
to the DMBS and retrieve the XML file (or fragment). Thus, a new kind of pages,
dynamically generated and a new architecture were born. We have no more the
traditional couple of a Web client and a Web server, but a third part is added, the
application program, running on the Web server and serving data from an underlying
repository, in most of the cases being a database. This scheme is sometimes referred
to as Web-powered database and the Web site, which provides access to a large
number of pages whose content is extracted from databases, is called data intensive
Web site (Atzeni, Mecca & Merialdo, 1998; Yagoub, Florescu, Issarny & Valduriez,
2000). The typical architecture for such a scenario is depicted in Figure 1. In this
scheme there are three tiers, the database back-end, the Web/application server and
the Web client. In order to generate dynamic content, Web servers must execute a
program (e.g., server-side scripting mechanism). This program (script) connects
to the DBMS, executes the client query, gets the results and packs them in HTML/
XML form in order to return them to the user. Quite a lot of server-side scripting
mechanisms have been proposed in the literature (Greenspun, 1999; Malaika, 1998).
An alternative to having a program that generates HTML is the several forms of
annotated HTML. The annotated HTML, such as PHP, Active Server Pages,
Java Server Pages, embeds scripting commands in an HTML document.

The popularity of the Web resulted in heavy traffic in the Internet and heavy load
on Web the servers. For Web-powered databases the situation is worsened by the
fact that the application program must interact with the underlying database to
retrieve the data. So, the net effect of this situation is network congestion, high client
perceived latency, Web server overload and slow response times for Web servers.
Fortunately the situation is not incurable due to the existence of reference locality
in Web request streams. The principle of locality (Denning & Schwartz, 1972)

Cache Management for Web-Powered Databases 203

asserts that: (a) correlation between immediate past and immediate future refer-
ences tends to be high, and (b) correlation between disjoint reference patterns tends
to zero as the distance between them tends to infinity. Existence of reference locality
is indicated by several studies (Almeida et al., 1996; Breslau, Cao, Fan, Phillips &
Shenker, 1999).

There are two types of reference locality, namely temporal and spatial locality
(Almeida et al., 1996). Temporal locality can be described using the stack distance
model, as introduced in (Mattson, Gecsei, Slutz & Traiger, 1970). Existence of high
temporal locality in a request stream results in a relatively small average stack
distance and implies that recently accessed data are more likely to be referenced in
the near future. Consider for example the following reference streams: AABCBCD
and ABCDABC. They both have the same popularity profile1 for each item.
Evidently, the stack distance for the first stream is smaller than for the second stream.
This can be deduced from the fact that the number of intervening references
between any two references for the same item in the first stream is smaller than for
the second stream. Thus, the first stream exhibits higher temporal locality than the
second. Spatial locality on the other hand, characterizes correlated references for
different data. Spatial locality in a stream can be established by comparing the total
number of unique subsequences of the stream with the total number of subsequences
that would be found in a random permutation of that stream. Existence of spatial
locality in a stream implies that the number of such unique subsequences is smaller
that the respective number of subsequences in a random permutation of the stream.
Consider for example the following reference streams: ABCABC and ACBCAB.
They both have the same popularity profile for each item. We can observe in the
first stream that a reference to item B always follows a reference to item A and is
followed by a reference to item C. This is not the case in the second stream and we
cannot observe a similar rule for any other sequence of items.

Due to the existence of temporal locality we can exploit the technique of
caching, that is, temporal storage of data closer to the consumer. Caching can save
resources, i.e., network bandwidth, since fewer packets travel in the network, and

I N
 T

 E
 R

 N
 E T

Web
Client

Proxy
Server

request

response

request

response
 cache cache

request

response

+ prefetching

main
memory

cache

disk
cache

Web
server

A
pplication Server

prefetch

response

request

DataBase

 cache

Web-Powered Database

Figure 1: Architecture of a typical web-powered database

204 Katsaros & Manolopoulos

time, since we have faster response times. Caching can be implemented at various
points along the path2 of the flow of data from the repository to the final consumer.
So, we may have caching at the DBMS itself, the Web server’s memory or disk, at
various points in the network (proxy caches (Luotonen & Altis, 1994)) or at the
consumer’s endpoint. Web proxies may cooperate so as to have several proxies to
serve each other’s misses (Rodriguez, Spanner & Biersack, 2001). All the caches
present at various points comprise a memory hierarchy. The most important part of
a cache is the mechanism that determines which data will be accommodated in the
cache space and is referred to as the cache admission/replacement policy.

Caching introduces a complication: how to maintain cache contents fresh, that
is, consistent with the original data residing in the repository. The issue of cache
consistency is of particular interest for Web-powered databases, because their data
are frequently updated by other applications running on top of the DBMS and thus
the cached copies must be invalidated or refreshed.

Obviously, requests for “first-time accessed” data and “non-cacheable” data
(containing personalized, authentication information, etc.) cannot benefit from
caching. In these cases, due to the existence of spatial locality in request streams,
we can exploit the technique of preloading or prefetching, which acts complemen-
tary to caching. Prefetching deduces future requests for data and brings that data in
cache before an explicit request is made for them. Prefetching may increase the
amount of traveling data, but on the other hand can significantly reduce the latency
associated with every request.

Contributions
This chapter will provide information concerning the management of Web

caches. It intends by no means to provide a survey of Web caching. Such a survey,
although from a very different perspective, can be found in (Wang, 1999). The target
of the chapter is twofold. Firstly, it intends to clarify the particularities of the Web
environment that call for different solutions regarding the replacement policies,
cache coherence and prefetching in the context of the Web-powered databases. It
will demonstrate how these particularities made the old solutions (adopted in
traditional database and operating systems) inadequate for the Web and how they
motivated the evolution of new methods. Examples of this evolution regard the
replacement, coherence and prefetching techniques for the Web. The second
objective of the chapter is to present a taxonomy of the techniques proposed so far
and to sketch the most important algorithms belonging to each category. Through this
taxonomy, which goes from the simplest to the most sophisticated algorithms, the
chapter intends to clearly demonstrate the tradeoffs involved and show how each
category deals with them. The demonstration of some popular representative
algorithms of each category intends to show how the tradeoffs affect the complexity
in implementation of the algorithms and how the ease of implementation can be
compromised with the performance. Finally, another target of the present chapter is
to present the practical issues of these topics through a description of how some
popular commercial products deal with them.

Cache Management for Web-Powered Databases 205

The rest of the chapter is organized as follows. The Section “Background”
provides some necessary background on the aforementioned topics and presents the
peculiarities of the Web that make Web cache management vastly different from
cache management in operating systems and centralized databases. Moreover, it will
give a formulation for the Web caching problem as a combinatorial optimization
problem and will define the performance measures used to characterize the cache
efficiency in the Web. The Section “Replacement Policies” will present a taxonomy
along with the most popular and efficient cache replacement policies proposed in the
literature. The Section “Cache Coherence” will elaborate on the topic of how to
maintain the cache contents consistent with the original data in the source and the
Section “Prefetching” will deal with the issue of how to improve cache performance
through the mechanism of prefetching. For the above topics, we will not elaborate
on details of how these algorithms can be implemented in a real system, since each
system provides its own interface and extensibility mechanisms. Our concern is to
provide only a description of the algorithms and the tradeoffs involved in their
operation. The Section “Web Caches in Commercial Products” will describe how
two commercial products, a proxy cache and a Web-powered database, cope with
cache replacement and coherency. Finally, the Section “Emerging and Future
Trends” will provide a general description of the emerging Content Distribution
Networks and will highlight some directions for future research.

BACKGROUND
The presence of caches in specific positions of a three-tier (or multi-tier, in

general) architecture, like that presented earlier, can significantly improve the
performance of the whole system. For example, a cache in the application server,
which stores the “hot” data of the DBMS, can avoid the costly interaction with it.
Similarly, data that do not change very frequently can be stored closer to the
consumer e.g., in a proxy cache. But in order for a cache to be effective, it must be
tuned so that it meets the requirements imposed by the specialized characteristics of
the application it serves. The primary means for tuning a cache is the admission/
replacement policy. This mechanism decides which data will enter the cache when
a client requests them and which data already in cache will be purged out in order
to make space for the incoming data when the available space is not sufficient.
Sometimes these two policies are integrated and are simply called the replace-
ment policy. The identification of the cached pages is based on the URL of the
cached page (with any additional data following it, e.g., query string, the POST
body of the documents)3.

For database-backed Web applications, the issue of cache consistency is of
crucial importance, especially for applications that must always serve fresh data
(e.g., providers of stock prices, sports scores). Due to the requirements of data
freshness we would expect that all dynamically generated pages (or at least, all
pages with frequently changing data) be not cached at all. Indeed, this is the most

206 Katsaros & Manolopoulos

simple and effective approach to guarantee data freshness. But, it is far enough from
being the most efficient. Due to the existence of temporal locality, some data get
repeatedly requested and consequently arises the issue of redundant computation for
their extraction from the database and their formatting in HTML or XML. We would
like to avoid such repeated computation, because it places unnecessary load on the
DBMS and the application server and does not use efficiently the existing resources,
i.e., cache space in the Web/application server (or proxy, client). Moreover, the
update frequency of some data may not be very high and consequently we can
tolerate a not very frequent interaction with the DBMS to refresh them. In addition,
recent studies show that even in the presence of high update frequency, materializing
some pages into the Web server leads to better system performance (Labrinidis &
Roussopoulos, 2000). The main issue in cache consistency is how to identify which
Web pages are affected by changes to base data and consequently propagate the
relevant changes. This issue concerns caches both inside the Web-powered
databases and outside it (client, proxy). For caches inside the Web-powered
database we have a second issue, the order in which the affected pages must be
recomputed. Consider for example two dynamically generated pages. The first one
is not very popular and is costly to refresh (due to the expensive predicate involved
or the large volume of generated data) whereas the second one is popular and very
fast to refresh. Obviously, recomputing the first page before the second one is not
a wise choice, since it may compromise the accuracy of the published data or
contribute to the access latency. In general, we need efficient and effective
mechanisms to invalidate the contents of the cache or to refresh them.

The issues pertaining to the management of a cache (admission/replacement,
coherency) are not new and there exists a rich literature in the field. They were
examined in the context of operating systems (Tanenbaum, 1992) and databases
(Korth, Silberschatz & Sudarshan, 1998), as well. But, the Web introduces some
peculiarities not present in either the operating systems or databases.
1. First, the data in the Web are mostly for read-only purposes. Rarely, we have

transactions in the Web that need to write the data back to the repository.
2. Second, we have variable costs associated with the retrieval of the data.

Consider, for example, the case of a client who receives data from different
Web servers. It is obvious that depending on the load of the servers and the
network congestion it will take different time to download the data. As a second
example, consider a client retrieving data from the same Web server but it
requires different processing to generate them.

3. Third, the Web data are of varying sizes whereas in the databases and operating
systems the blocks that move through the levels of memory hierarchy are of
constant size, which equals the size of a disk block.

4. Fourth, the access streams seen by a Web server are the union of the requests
coming sometimes from a few thousands Web clients and not from a few
programmed sources as happens in the case of virtual memory paging systems.
These characteristics call for different solutions concerning Web cache

management. Consequently, an effective caching scheme should take into account

Cache Management for Web-Powered Databases 207

the aforementioned factors, that is, recency of reference, frequency of reference,
size, freshness, downloading time. Depending on the point in the data flow path
where caching is implemented, some of these factors may be more important than
the others or may not be present at all.

The benefits reaped due to caching can be limited (Kroeger, Long & Mogul,
1997). Obviously, caching is worthless for first-time accessed data. Also, caching is
useless for data that are invalidated very frequently due to changes in the repository
and there is a need for immediate propagation of the updates that take place in the
repository and affect cached data. Moreover, for Web-powered databases which
export base data in the form of Web pages (called WebViews in (Labrinidis &
Roussopoulos, 2000)), it is preferable to “materialize” the WebViews at the Web
server and constantly update them in the background when changes to base data
occur (Labrinidis & Roussopoulos, 2000).

In general, the drawbacks of caching originate from caching’s reactive nature.
Caching attempts to cure a “pathological” situation, in our case the performance
inefficiency, after it has been seen for the first time. Thus, in situations when caching
is of limited usefulness, a proactive mechanism is needed, a mechanism that will take
some actions in advance in order to prevent system’s performance deterioration.
This mechanism is prefetching, which is the process of deducing future accesses for
data and bringing those data into the cache in advance, before an explicit request is
made for that data.

Prefetching has also been extensively examined in the context of operating
systems and databases. In general, there exist two prefetching approaches. Either
the client will inform the system about its future requirements (Patterson, Gibson,
Ginting, Stodolsky & Zelenka, 1995; Cao, Felten, Karlin & Li, 1996) or, in a more
automated manner and transparently to the client, the system will make predictions
based on the sequence of the client’s past references (Curewitz, Krishnan & Vitter,
1993). The first approach is characterized as informed prefetching, where the
application discloses its exact future requests and the system is responsible for
bringing the respective objects into the cache. The second approach is charac-
terized as predictive prefetching, where the system makes predictions based on
the history of requests for data. Finally, there is another technique, termed
source anticipation, that is, the prefetching of all (or some part thereof) of the
embedded links of the document.

In the design of a prefetching scheme for the Web, its specialties must be taken
into account. Two characteristics seem to heavily affect such a design: a) the client
server paradigm of computing the Web implements, b) its hypertextual nature.
Therefore, informed prefetching seems inapplicable in the Web, since a user does
not know in advance its future requirements, due to the “navigation” from page to
page by following the hypertext links. Source anticipation (Klemm, 1999), may
work in some cases, but seems inappropriate in general, because there is no apriori
information about which of a large set of embedded links the client is likely to request.
On the other hand, predictive prefetching seems more viable, especially under the

208 Katsaros & Manolopoulos

assumption that there is sufficient spatial locality in client requests, because such a
prefetching method could use the history of requests to make predictions.

Problem Formulation
Let us now provide a formal statement for the problem of cache management

for a Web-powered database. Let O be the set of all data objects that may be
requested in any instance of the time during cache operation. For each object d ∈
O there a positive size sd and a positive cost cd associated with it. The cost cd is a
function F of the following parameters: size sd, recency of reference rd, frequency
of reference fd and freshness ad, that is, F=F(sd,rd,fd,ad). A request sequence is a
function Σ:[1..m]→O and will be denoted as σ=σ1,σ2,�,σm. The set of all possible
request sequences will be denoted as R. When no cache is used, the cost in servicing

sequence σ is C(σ)=∑ =

m

k
c

1
κσ . Let the cache size be X. We will assume that sd ≤ X,

∀ 1≤ d ≤ m, that is, no data object is larger than the cache. We define the cache state
Sk at time k to be the set of objects contained in the cache at that time.

Definition 1 (The Generalized Caching Problem (Hosseini-Khayat,
2000)) Let σ=σ1,σ2,...,σm be a sequence of requests resulting in a sequence of
cache states S0,S1,�, Sm such that, for all Sk, k=1,2,�,m

Sk =

∈
∉∪−

−−

−−

11

11

 if
 if}{)(

kkk

kkkkk

SS
SES

σ
σσ

 (1)

where Ek ⊂ Σκ−1 denotes the set of items purged out of the cache. Find among all state
sequences satisfying Equation (1), a state sequence that minimizes the cost function

F((Sk),σ) = ∑
=

m

k
k kc

1
σδ

where

δ´k =

∉
∈

−

−

1

1

 if1
 if0

kk

kk

S
S

σ
σ

and (Sk) denotes the state sequence.
This problem can be viewed both as off-line and on-line depending on how

requests are presented to the algorithm. When the request sequence is apriori
known then the problem is off-line, otherwise it is on-line. The off-line case of
this problem with equals costs and sizes for each object has an optimal solution
due to Belady (Belady, 1966) and is the LFD 4 algorithm, which evicts from cache
the page whose next reference is furthest in the future. But, non-uniformity in
costs and sizes introduces complications and LFD is not optimal any more as
shown in the next two examples.

Example 1 (Varying Costs). Let us consider the following four unit size

Cache Management for Web-Powered Databases 209

objects {1,2,3,4} with associated costs {1,3,10,2}. Consider the request sequence σ
= 1,2,3,4,2,3,4 and a cache with size X = 2. Then, LFD produces the following states:
ø, {1}, {1,2}, {3,2}, {4,2}, {4,2}, {4,3}, {4,3} and incurs a cost of 26. Another
algorithm, called CIFD 5 which evicts the page with the smallest value of

tanceForwardDis
Cost

 produces the following states ø, {1}, {1,2}, {3,2}, {3,4}, {2,3},

{2,3}, {4,3} and incurs a cost of 21.
Example 2 (Varying sizes). Let us consider the following four unit cost objects

{1,2,3,4} with associated sizes {1,1,2,2}. Consider the request sequence σ =
1,2,3,4,3,1,2,3,4,2 and a cache with size X = 4. Then, LFD produces the following
states: ø, {1}, {1,2}, {1,2,3}, {4,3}, {4,3}, {1,3}, {1,2,3}, {1,2,4}, {1,2,4} and incurs
a cost of 7. Another algorithm, called Size 6, which evicts the largest size page
produces the following states ø, {1}, {1,2}, {1,2,3}, {1,2,4}, {1,2,3}, {1,2,3}, {1,2,3},
{1,2,3}, {1,2,4} and incurs a cost of 6.

The optimal solution for the generalized caching problem was presented in
(Hosseini-Khayat, 2000) which is proven to be in NP. Any solution for the on-line
version of the problem must rely on past information in order to make replacement
decisions. If some probabilistic information regarding the requests is known, then we
can derive some optimal solutions for the on-line problem, as well (see (Hosseini-
Khayat, 1997)). But, in practice any solution for the problem (optimal or suboptimal)
must be practical, that is, it must perform acceptably well, it must be easy to
implement and should run fast, without using sophisticated data structures and in
addition should take into account the peculiarities of the Web.

Performance Measures
Depending on the specific factors that we want to consider in the design of a

caching policy, (recency, frequency of reference, consistency, size, downloading
latency, etc.) we can modify the above definition appropriately and express it as an
optimization problem.

The most commonly used performance measures used to characterize the
efficiency of a caching algorithm are the hit ratio, byte hit ratio and delay savings ratio
(Shim, Scheuermann & Vingralek, 1999).

Let D be the set of objects in a cache in a time instance. Let rd be the total
references for object d, crd the number of references for object d satisfied by the
cache. Let sd be the size of the object d and gd be the average delay incurred while
obtaining it.

210 Katsaros & Manolopoulos

Definition 2 (Hit Ratio). The hit ratio of a cache is the percentage of
requests satisfied by the cache:

∑∑
∈∈ Dd

d
Dd

d rcr

In essence, improving the hit ratio is equivalent to reducing the average latency
seen by a client.

Definition 3 (Byte Hit Ratio). The byte hit ratio (or weighted hit ratio) of a
cache is the percentage of bytes satisfied by the cache. That is,

∑∑
∈∈ Dd

dd
Dd

dd rscrs **

In essence, improving the byte hit ratio is equivalent to reducing the average
traffic of data from the source to the consumer.

Definition 4 (Delay Savings Ratio). The delay savings ratio determines the
fraction of communication delays which is saved by satisfying requests from cache.
That is,

∑∑
∈∈ Dd

dd
Dd

dd rgcrg **

DSR is closely related to BHR. The latter can be seen as an approximation for
the former, where the delay to obtain an object is approximated by its size.

REPLACEMENT POLICIES
Replacement algorithms deal with the problem of the limited cache space. They

try to keep in cache the most “valuable” data. The “value” of a datum is usually a
function of several parameters, say recency, access frequency, size, retrieval cost,
frequency of update etc. The replacement policy makes replacement decisions
based on this value. A good replacement strategy should be able to achieve a good
balance among all of them and at the same time to “weigh” differently the most
important of them. An additional requirement for the policy is the ability to easily
implement it without the need of maintaining sophisticated data structures.

It is almost impossible to categorize all the Web cache replacement algorithms
proposed so far into categories with distinguishable boundaries. Nevertheless,
following the proposal of (Aggrawal, Wolf & Yu, 1999), we will catagorize the
algorithms into three main categories, namely a) traditional policies and direct
extensions of them, b) key-based policies and finally c) function-based policies.
Moreover, for the last category, which includes the majority of the proposed
algorithms, we will further discriminate them based on whether they are based on
LRU or LFU or incorporate both.

Traditional policies and direct extensions of them. The algorithms
belonging to the first category comprise direct application of policies proposed in the
context of operating systems and databases or modifications of them to take into
account the variable size of documents. LRU replaces the object, which was least

Cache Management for Web-Powered Databases 211

recently referenced. This is the most popular algorithm used today and capitalizes on
temporal locality. Its simplicity stems from the fact that in order to make replacement
decisions it only needs to maintain a heap with the IDs of the cached objects. Its
overhead is O(n) in space (n is the number of cached objects) and O(1) time per
access. This is the main reason for its use by many commercial products. An
extension to LRU is LRU-K (O’Neil, O’Neil & Weikum, 1993), which replaces the
document whose k-th reference is furthest in the past. FIFO replaces the objects,
which entered first in the cache. LFU replaces the object with the least number of
references. A variant of the LFU, the LFU-Aging policy (Robinson & Devarakoda,
1990) considers both the object’s access frequency and its age in the cache (the
recency of last access). Both LRU and LFU optimize the byte-hit ratio.

These policies were all examined in a recent study (Abrams et al., 1996) and
they were found to be inadequate for Web caching. The primary reason is that they
fail to take into account the variable size of Web objects. Object’s size can have a
dramatic effect on cache’s performance, as it has already been shown its effect on
the Belady’s optimal algorithm in Example 2. In alleviating this drawback for the
LRU, LRU-THOLD was proposed. LRU-THOLD is a variant of LRU that avoids the
situation in which a document that is large compared to the cache size causes the
replacement of a large number of smaller documents. This policy is identical to LRU,
except that no document larger than a threshold size is cached. (Even if the cache
has room, a document whose size is larger than the threshold is never cached.) A
policy tailored for Web objects is the SIZE policy (Abrams et al., 1996), which
replaces the largest object in the cache. SIZE aims at improving the hit ratio, since
it favors small objects.

Key-based policies. All the above policies suffer from the drawback that they
use only a simple characteristic of the cached objects in order to make replacement
decisions e.g., LRU uses recency, SIZE uses size, etc. In alleviating this drawback,
key-based policies use a couple or more “keys” to obtain the objects in sorted order
of their “utility”. The recency of reference, the size, the frequency of reference, etc.
can be used as keys by these policies. One of them is selected as primary key, another
as secondary key, etc. As replacement victim is selected the object with the least
(greatest) value of the primary key. Ties are broken using a secondary key, then using
a tertiary key and so on.

A representative algorithm of this category is the LRU-MIN (Abrams et al.,
1996), which is a variant of LRU that tries to minimize the number of documents
replaced. Let sd be the size of the incoming object d, which does not fit in the cache.
If there are objects in the cache with size at least sd, then LRU-MIN removes the least
recently used such object. If there are no such objects, then starts removing objects
in LRU order of size sd/2, then objects of size sd/4, and so on until enough free space
has been created. LOG2(SIZE) (Abrams et al., 1996) is another key-based policy
which uses the log2(size) as primary key and time since last access as secondary
key. Hyper-G (Abrams et al., 1996) is another algorithm, which uses frequency of
reference as primary key, recency of reference as secondary key and object’s size
as tertiary key.

212 Katsaros & Manolopoulos

It is evident that key-based policies prioritize some factors over others. This may
not be always correct. In essence, traditional policies and key-based policies fail to
integrate all the relevant factors into a single value that characterizes the utility of
keeping an object into the cache. For example, with LRU, the cache can be populated
with objects referenced only once purging out documents with higher probability of
reference. Consequently, LFU would seem more appropriate, but LFU prevents
popular (in the past) “dead”7 documents from being evicted from cache and needs
an “aging” mechanism to avoid “cache pollution”. Such a mechanism requires fine-
tuning of several parameters and thus it is difficult to implement. SIZE performs well
with respect to hit ratio, but it is the worst policy when optimizing byte hit ratio
(Abrams et al., 1996) for which LFU is the best policy. This is exactly what function-
based policies do. They assign a utility value to each cached object, which is a
function of various factors, such as recency, size, retrieval cost, etc.

Function-based policies. Function-based policies assign to every object in the
cache a value, “utility value”, which characterizes the benefit of retaining this object
in the cache. This “utility value” is a function of several parameters, such as recency
of reference, frequency of reference, size, retrieval cost, etc. Replacement decisions
are made using this “utility value”.8

It is not possible to partition these policies into disjoint groups, because they
incorporate into their “utility value” different subsets of the set of parameters
mentioned above. Nevertheless, we choose to categorize them into three groups,
based on whether they capture temporal locality (recency of reference),
popularity (frequency of reference) or both. Thus in the first category we have
the function-based policies extending LRU, in the second category the
function-based policies extending LFU and in the third, the function-based
policies integrating LRU-LFU.

Function-based policies extending LRU. The common characteristic of this
family of algorithms is that they extend the traditional LRU policy with size and
retrieval cost considerations. Their target is to enhance the popular LRU algorithm
with factors that account for the special features of the Web. The most important
of them are the GreedyDual-Size (Cao & Irani, 1997) and Size-Adjusted LRU
(SLRU) (Aggrawal, Wolf & Yu, 1999). Both can be used for browser, proxy or Web
server caching, as well.

GreedyDual-Size (GD-Size) (Cao & Irani, 1997). The GreedyDual-Size is
an elegant algorithm based on the GreedyDual (Young, 1994) that combines
gracefully recency of reference with retrieval cost cd and size sd of an object. The
“utility value” associated with an object that enters the cache is:

UVGD-Size =
d

d

s
c

.

When replacement is needed, the object with the lowest UVGD-Size is replaced.
Upon replacement, the UVGD-Size values of all objects are decreased at an amount
equal to the UVGD-Size value of the replacement victim. Upon re-reference of an
object d its UVGD-Size value is restored to cd/sd. Thus, the UVGD-Size for a cached object

Cache Management for Web-Powered Databases 213

grows and reduces dynamically upon re-references of the object and evictions of
other objects.

Upon an eviction, the algorithm requires as many subtractions as is the number
of objects in the cache. In order to avoid this, we can maintain an “inflation” value
L, which is set to the “utility value” of the evicted object. Upon re-reference of an
object d, instead of restoring its UVGD-Size to cd/sd, we offset this by L. Below we
present the algorithmic form of GreedyDual-Size with the above modification.

Algorithm 1 (GreedyDual-Size (GD-Size) (Cao & Irani, 1997))
Initialize L ← 0
Process each request in turn. The current request is for document d.
(1). if d in cache
(2). UV(d) ← L + cd/sd.
(3). if d not in cache
(4). while there is not enough cache space for d
(5). Let L ← minqÎ cache UV(q)
(6). Evict q such that UV(q) = L.
(7). Bring d into cache and set UV(d) = L+cd/sd.

Depending on the cost measure we want to optimize, i.e., hit ratio, byte hit ratio
we can set the retrieval cost cd appropriately.

A nice characteristic of this algorithm is its on-line optimality. It has been proved
that GreedyDual-Size is k-competitive, where k is the ratio of the cache size to the
size of the smallest document. This means that for any sequence of accesses to
documents with arbitrary costs and arbitrary sizes, the cost of cache misses under
GreedyDual-Size is at most k times that under the offline optimal replacement
algorithm. This ratio is the lowest achievable by any online replacement algorithm.

Size-Adjusted LRU (SLRU) (Aggrawal et al., 1999). SLRU (and its
approximation, the Pyramidal Selection Scheme (PSS)) strives to incorporate size
and cost considerations into LRU along with cache consistency issues. Usually,
objects have an associated Time-To-Live (TTL) tag, attached by the generating
source (e.g., Web server), or an Expires tag that defines the lifetime of the object.
We can exploit this tag, when present, in order to decide the freshness of an object
and incorporate this factor into the replacement policy.

Let us define the dynamic frequency of an object d to be 1/�Tdk, where �Tdk
is the number of references that intervene between the last reference for the object
d and the current k-th reference. Let αd be the time between when the object was
last accessed and the time it first entered the cache. Also, let βd be the difference
between the time the object expires and the time of its last access. Then, the refresh
overhead factor rd is defined as min(1,αd/βd). If the object has not been accessed
before, then rd=1. If we are not aware of object’s expiration time then rd=0. The
algorithm assigns to each object in the cache a “utility value”, which is equal to:

UVSLRU =
dkd

dd

Ts
rc

∆
−

*
)1(*

.

214 Katsaros & Manolopoulos

Its goal it to minimize the sum of the “utility value” of the evicted objects. Let
Sk be the cache content at the k-th reference. Let R be the amount of additional
memory required to store an incoming object and consider the decision variable yd
which is 0 for an object, if we wish to retain it into the cache and 1 otherwise. Then,
the problem of selecting which objects to evict from cache can be expressed as:

Minimize ∑
∈

∆−
kSd

dkddd Trcy /))1(**(

such that

∑
∈

≥
Skd

dd Rys)*(and yd {0,1}.

This is a version of the well-known knapsack problem where the items that
we wish to store in the knapsack are those with the least “utility value”. This problem
is known to be in NP (Garey & Johnson, 1979). In practice, there exist fast and
efficient heuristics. A greedy solution is to sort the objects in non-decreasing order
of (sd*∆Tdk)/(cd*(1-rd)) and keep purging from cache the objects with the highest
index in this sorting.

Function-based policies extending LFU. It is well known (Coffman &
Denning, 1973) that when9 a) the requests are independent and have a fixed
probability, and b) the pages have the same size, then the optimal replacement policy
is to keep in cache those pages with the highest probability of reference. In other
words, the best online algorithm under the Independent Reference Model is the LFU.
Based on this and on the observation (Abrams et al., 1996) that frequency–based
policies achieve very high byte hit rates, the function-based policies extending
LFU enhance the traditional LFU algorithm with size and/or retrieval cost consider-
ations. The LFU with Dynamic Aging (LFU-DA) (Dilley &Arlitt, 1999) extends the
LFU-Aging with cost considerations, whereas the HYBRID algorithm incorporates
size and cost considerations. It is interesting to present how HYBRID computes the
“utility value” of each object in the cache, since it was the first that incorporated the
factor of the downloading delay into the replacement decision.

HYBRID (Wooster & Abrams, 1997). Let a document d located at server s
be of size sd and has been requested fd times since it entered the cache. Let the
bandwidth to server s be bs and the connection delay to s be cs. Then, the utility value
of each document in the cache is computed as follows:

UVHYBRID =
d

W
dsbs

s
fbWc f*)/(+

 , Wf and Wb are tunable constants.

The replacement victim is the object with the lowest UVHYBRID value.
Obviously this algorithm is highly parameterized. Constants Wb and Wf weigh the

bandwidth and frequency respectively, whereas cs and bs can be computed from the
time it took to connect to server s in the recent past. HYBRID may not be used only
for proxy caches, but for caches inside the Web-powered database as well. For such
caches the first factor of the nominator can be replaced by a factor determining the
cost to generate a Web page.

Cache Management for Web-Powered Databases 215

This family of function-based policies does not include many members, since it
does not appear to be a wise choice to ignore the temporal locality in the design of
a replacement policy. So the later efforts concentrated in extending other policies
(like GreedyDual-Size) with frequency considerations.

Function-based policies integrating LRU-LFU. This category integrates
into the replacement policy both recency and frequency of reference. As expected,
these algorithms are more sophisticated than all the previous. The integration of
recency and frequency with size and cost considerations results on the one hand in
improved performance and on the other hand in having many tunable parameters. As
example algorithms of this category we present two algorithms, namely the Lowest
Relative Value (LRV) and the Least Normalized Cost Replacement for the Web
with Updates (LNC-R-W3-U).

Lowest Relative Value (LRV) (Rizzo & Vicisano, 2000). A replacement
algorithm tailored for proxy caches and evaluating statistical information is the Least
Relative Value (LRV). Statistical analysis of several traces showed that the
probability of access for an object increases with the number of previous accesses
for it and also, that the time since the last access is a very important factor and so
is the size of an object. All, these parameters have been incorporated into the design
of LRV, which strives to estimate the probability of reaccessing an object as a function
of the time of its last access, its size and the number of past references for it.

The utility value of each cached document which has been accessed i times in
the past is computed as follows:

UVLRV =),,(* dddr
d

d stiP
s
c

where Pr is the probability of re-reference for a document d, given that it has already
been referenced i times, evaluated at the time of its last access t. The dependence
of Pr(id,td,sd) on these three parameters has been verified with statistical analysis of
several real Web traces. We explain in the next paragraph how Pr can be derived.

Let ϕ(t) and Φ(t) denote the probability density function and the cumulative
distribution function of the time between consecutive requests to the same document.
Statistical information obtained from real Web traces shows that ϕ(t) is approxi-
mately independent from the number of previous accesses to a document. ϕ(t) is
also the pdf of the next access time conditioned to the fact that the document gets
requested again. Let Z denote the probability that a document gets re-referenced,
evaluated at the time of the previous access. Assuming the independence stated
above, then: a) Z=Z(id,sd) and b) the pdf of the next access time can be expressed
as Z*ϕ(t), and thus Pr can be computed as:

()∫
∞

=

−==
t

r tΦZdωωφZP
ω

))(1(*** .

Now, the function Z=Z(id,sd) which describes the dependence of Pr on the
number of references to a document and on its size sd must be computed. LRV

216 Katsaros & Manolopoulos

neglects the dependence of Z on sd for documents that have been referenced more
than once. Thus:

 =

=
otherwise.)(

,1 if),(
),(

d

ddd
dd

iN
isiM

siZ

The function N(id) can be computed as:

N(id) = ||||
|||| 1

i

i

D
D +

, where ||Di|| is the number of documents accessed i times.

The function M(id,sd) can be computed from statistical information gathered
from request streams. M(id,sd) is not estimated for every distinct value of sd, but for
groups10 of values instead.

Now we turn to the function Φ(t). The function Φ(t) cannot be computed
analytically. Thus we must rely on statistical information available on request streams

in order to derive an approximation)(
~

tΦ for it. Such an approximation is the

following:

 +=Φ
1

1~)(log*)(
γ
γtfct , where)1(*)(2

2
γ
t

eγtf −= .

where γ1, γ2 are constants in the range 10..100 and >5*105, respectively.11

Thus, the probability Pr of re-reference for an object can be estimated as:

Pr(id,td,sd) =

Φ−

=Φ−

otherwise.))(1)((

1, if))(1)(,1(
~

~

tiN

itsM

d

d

Apparently, LRV has many parameters that need to be tuned appropriately. This
means additional cost and complexity, but LRV can make more clever replacement
decisions since it considers more information regarding requests streams. This is a
fundamental tradeoff: the more information we use, the more efficient our processing
is, but this efficiency comes at increased computation cost.

Least Normalized Cost Replacement for the Web with Updates (LNC-R-
W3-U) (Shim, Scheuermann & Vingralek, 1999). The LNC-R-W3-U algorithm takes
into account, in addition to other factors, the cost to validate an expired object. Its
target is to minimize response time rather that the hit ratio and consequently it
attempts to minimize the delay savings ratio in which it incorporates the cost to
validate an “expired” object.

Let rd be the average reference rate for object d, gd the mean delay to fetch it
into the cache, ud the average validation rate and vcd the average delay to perform
a validation check. Then, the “utility value” for object d is defined as:

UVLNC-R-W3-U =
d

dddd

s
vcugr ** −

.

Cache Management for Web-Powered Databases 217

Using a greedy heuristic, as in the case of SLRU, we can select replacement
victims. The major issue for this algorithm is that it has many parameters rd, gd, ud,
vcd which are difficult to compute. We can compute gd and vcd using a weighted sum
of their latest values and their past values as follows:

sample
old
d

new
d vcµvcµvc **)1(+−=

sample
old
d

new
di gµgµg **)1(+−=

where vcsample and gsample are the most recently measured values of the respective
delays and ¼ is a constant that “weighs” the recent with the old measurements.

The mean reference rate and mean validation rate can be computed using a
sliding window of K most recent reference times as:

K
d

tt
Kr
−

=

where t is the current time and tK is the time of the oldest reference in the sliding window.
The mean validation rate can be computed from a sliding window of last K

distinct Last-Modified timestamps12 as:

Kur
d

tt
Ku
−

=

where tr is the time when the latest version of object d was received by the cache
and tuK is the K-th most recent distinct Last-Modified timestamp of object d (i.e., the
oldest available distinct Last-Modified). If fewer than K samples are available, then
K is set to the maximal number of available samples.

Apart from LRV and LNC-R-W3-U, there exist quite a lot of algorithms in
this family. Some of them belong to the family of GreedyDual-Size, in the sense
that they incorporate frequency of reference considerations into the original
algorithm (see Dilley & Arlitt, 1999; Jin & Bestavros, 2001). Some others are
more adhoc in the sense that the “utility value” they define for a document is a
ratio relating frequency, recency, cost, in a non uniform manner (e.g., exponen-
tial) (Niclausse, Liu & Nain, 1998).

Discussion
In this section, we have presented a categorization of cache replacement

algorithms for Web objects. We have also presented the most important algorithms
belonging to each category. Some of them are relatively simple, whereas some others
are more sophisticated. There is no clear “champion” algorithm, which performs best
in all cases. As we will see in the section, which discusses replacement issues for
some major commercial products, the tendency is to make replacement decisions
considering only expiration times and recency of reference. This is because these
factors are easy to handle and do not impose high load on the system in order to make
replacement decisions. Moreover, they do not require complicated data structures
for the maintenance of the metadata associated with cached objects.

218 Katsaros & Manolopoulos

CACHE COHERENCE
Web-powered databases generate dynamic data with sometimes high update

frequencies. This makes the issue of cache consistency (or cache coherence)
critical. The purpose of a cache consistency mechanism is to ensure that cached data
are eventually updated to reflect the changes to the original data. Caches can provide
either strong or weak consistency. The former form of consistency guarantees that
stale data are never returned to the clients. Thus, the behavior of the whole system
(Web-powered database and client applications) is equivalent to there being only a
single (uncached) copy of the data, except from the performance benefits of the
cache. Weak consistency allows served copies to diverge temporarily from the copy
in the origin server. In other words, caches providing weak consistency may not
return to the client the result of the last “write” operation to a datum.

The coherency requirements associated with Web objects depend in general on
the nature of the objects and the client’s tolerance. As a concrete example consider
a cache that serves stock prices, sports and weather information. This particular
cache will usually be forced to provide strong consistency for stock prices because
of the stringent client requirements, whereas it may provide weak consistency for
sports and weather data.

Cache consistency can be achieved through either client-driven or server-
driven protocols.13 In the former, the cache is responsible for contacting the source
of original data in order to check the consistency of its cached data. In the latter, the
data source is responsible for notifying the caches, which store its data, for any
committed “writes”. These two options are the two extremes in the spectrum of
possible alternatives. They represent the fundamental trade-off in cache coherency:
client caches know when their data are requested, but they do not know when they
are modified14. On the other hand, servers have complete knowledge of “writes” on
data, but they do not know which clients that they have ever requested any of their
data, are still interested in them.

Consequently, these two approaches differ in the burden they impose on the
server and the network, and on the “read” and “write” performance. The former
approach may impose heavy or unnecessary load on servers due to many validating
messages for unchanged resources. The latter requires the server to maintain client
state, keeping information about which client caches which objects (Cao & Liu,
1998). Moreover, these approaches have different resilience to failures. Network
partition, for example, can prevent the client from receiving invalidation information
and thus to use stale data. Another complication for server-driven protocols is how
to identify their clients. This can be solved with the use of tokens, called “cookies”.
Cookies are encoded strings of data generated by the Web server and stored on the
client. There are two types of cookies: persistent cookies and session cookies.
Persistent cookies are usually stored in a text file on the client and may live
indefinitely. Session cookies usually reside in the memory space of the client and
typically are set to expire after a period of time determined by the Web server. For
the “cookie-phobic” clients, who do not permit cookies to be stored on their machine,

Cache Management for Web-Powered Databases 219

many Web sites simply embed cookies as parameters in the URLs. This is typically
done by inserting (or appending) a unique sequential number, called session ID, into
all the links in the site’s HTML code15.

An amalgamation of these two extreme approaches, called Leases (Gray &
Cheriton, 1989), is to have the server inform the client about “writes” for a specified
period of time, and after that time, the clients are responsible for validating their data.
This approach tries to combine the advantages of the aforementioned extreme
solutions by fine-tuning the period for which the server notifies about changes in data.

Cache consistency has been studied extensively in computer architecture,
distributed shared memory, network and distributed file systems (Howard et al.,
1988; Nelson, Welch & Ousterhout, 1988) and distributed database systems
(Franklin, Carey & Livny, 1997). In the Web, data are mostly for read only purposes,
so many of the approaches proposed in the context of distributed databases and
distributed shared memory systems cannot be applied in the Web. The most relative
fields are that of network and distributed file systems, but the challenge in the Web
environment is to make the solutions proposed in these fields to scale to the large
number of clients, the low bandwidth of the Internet, the frequent failures (client,
server) and the network partitions. In Subsection “Cache coherence maintenance”,
we will present the different approaches for cache consistency maintenance,
categorized as either client or server-driven.

For Web-powered databases, since served objects (HTML-XML fragments
(Challenger, Iyengar & Dantzig, 1999; Yagoub et al., 2000), HMTL-XML pages) are
derived from the data residing in the underlying database, arises the need to maintain
the dependencies between base data and derived data, so as to be able to identify
stale objects when changes to base data take place. Thus, the issue of object change
detection is also very important. In Subsection “Object change detection” we will
present an approach for the detection of which objects are affected by changes to
base data.

Cache Coherence Maintenance
Client-driven protocols. Client-driven protocols rely on the client to

validate the contents of its cache before returning them as a hit. The simplest
approach, called poll-each-read (Yin, Alvisi, Dahlin & Lin, 1999; Cao & Liu,
1998), is to send a validating message to the respective server every time the data
are requested, in order to confirm that the data are fresh or in the opposite case,
to retrieve the modified ones. The primary advantage of this approach is that it
never returns stale data to clients without the client knowing it.16 But this protocol
imposes high load on servers due to the very many validating messages received
by clients, high network traffic due to many control messages traveling in the
network and unnecessary client latency, in case the data are not modified, since
every “read” request must be preceded by a contact to the server. Consequently
this policy suffers from poor “read” performance, but on the other hand, is very
efficient for “writes” since they proceed immediately, without any invalidation

220 Katsaros & Manolopoulos

procedure from the server to the clients. In other words, this policy is ideal when
there are very few “reads” and many “writes”.

Trying to reduce the communication messages for data validation and read
latency, another policy based on poll-each-read, namely poll, assumes that the data
remain valid for a specific period of time after their latest validation. If this time
interval is assumed to be zero, then poll reduces to poll-each-read. This policy
cannot guarantee strong consistency. The challenge is to determine an appropriate
value for this time interval. By choosing a small value for this interval, we can reduce
the percentage of stale objects returned to the clients, but the number of validating
messages to the server increases significantly. The server can associate with every
datum a value for this interval, Time-To-Live (TTL) (Cate, 1992) or Expires, or the
client can calculate a value by its own for every data it caches (adaptive-TTL) (Cao
& Liu, 1998).

Server-driven protocols. On the other extreme of spectrum, lies the protocol
that has the servers to notify the clients for any changes on data. This policy is called
Invalidation or Callback (Howard et al., 1988; Nelson et al., 1988) and clearly, it
requires the servers to maintain some information recording which clients cache
which data. Before any “write” occurs, the server must send out invalidation
messages to all clients caching these data. This policy guarantees strong consistency,
within the time it is required for a message to be delivered to all clients. On the other
hand, the maintained “state” information for clients can grow to unmanageable
amount, when there are a lot of clients and a lot of requested resources. Moreover,
it causes bursts of server activity for sending out the invalidation messages to all
clients caching a copy of the modified object. Obviously, the “read” performance of
this policy is very good, since cached data are guaranteed to be always fresh, but the
“write” performance may become very bad in cases of network partitions, client
failures and large number of clients, due to the communication overhead for
delivering the invalidation messages. To state it simply, this policy is ideal in
environments where there are a lot of reads and a few writes. Nevertheless, server-
driven consistency has been shown to be very efficient in keeping the clients and the
server synchronized and this efficiency comes at relatively little cost (Cao & Liu,
1998; Yin, Alvisi, Dahlin & Iyengar, 2001).

In between these two extremes lies the Leases protocol (Gray & Cheriton,
1989; Yin et al., 1999). A cache using Leases requires a valid lease, in addition to
holding the datum, before returning that datum in response to a read request. A client
holding a valid lease on an object is sure that no “write” on this object will proceed
before it is being notified about it (or take his permission). When an object is fetched
from the origin server, the server returns a lease guaranteeing that the object will not
be modified during the lease term. After the lease expires, a read of the object
requires that the cache extends first the lease on the object, updating the cache if the
object has been modified since the lease expiration.

When a “write” to an object must take place and an unreachable client (due to
crash or network partition) holds a lease on this object, the server needs only to wait
for the expiration of this lease before proceeding into the write. So, the Leases

Cache Management for Web-Powered Databases 221

protocol limits the starvation of “writes”. Similarly, when the server crashes, it can
restore the information on the leases it has granted if its has saved them on secondary
storage or alternatively (due to the high I/O cost the former approach incurs) it can
only wait for a period of time equal to the longest lease it has granted17 before commit
any writes. Leases present a trade-off similar to Poll; long lease terms reduce the
cost of reads, amortizing lease renewal over many reads, but on the other hand, delay
the “writes”. Short lease terms present several advantages. First, they minimize the
delay due to client or server failures. Second they reduce the storage requirements
on the server and third they minimize the false-sharing (Gray & Cheriton, 1989) that
occurs. False sharing occurs when the server needs to modify an object, for which
a client not currently accessing that object holds a lease. Longer-term leases are
more efficient for “hot” objects with relatively little write-sharing. The determination
of the optimal lease term depends on a number of factors, such as object popularity,
state-space overhead, control messages overhead, read/write frequency. Some
analytical models addressing the issue of optimal lease duration were presented in
(Duvvuri, Shenoy & Tewari, 2000).

Leases are efficient when the cost of the lease renewal is amortized over
many reads. For the Web though, the interaccess time for an object may span
several minutes degrading thus the performance benefits of the original Leases.
So, Volume Leases were proposed in (Yin et al., 1999) to amortize the lease
renewal cost over reads to many objects. Objects at the server are grouped into
volumes. Usually a volume groups together related objects (e.g., objects that
tend to be accessed together). A client can access an object in its cache when
it holds a valid lease on both the object (Object Lease) and the volume to which
this object belongs (Volume Lease). The server can modify an object as soon as
either lease (Object or Volume) expires.

With a lease term equal to zero, the Leases is equivalent to Poll-each-read.
Leases bears some similarity with the TTL approach, but the difference being that
the former guarantees strong consistency.

Summary. In Table 1 we present the consistency maintenance protocols
categorized along two dimensions; the first being the form of consistency they
provide and the second being the part that initiates the consistency check.18

Object Change Detection
When caching dynamically generated objects, a key problem is to determine

which objects become obsolete, when base data change. This is important for the
scheduling of the invalidation messages that must be sent to the caches (or in general

Protocol / Consistency Weak Strong

Client-driven Poll, (adaptive-)TTL Poll-each-read

Server-driven Invalidation, Leases

Table 1: Categorization of consistency maintenance protocols

222 Katsaros & Manolopoulos

to invalidate a cached object) in order to maintain strong consistency. For the
identification of the objects affected by changes to base data, caches must maintain
information about the dependencies of cached objects on base data.

For this purpose, the Object Dependence Graph (ODG) and Data Update
Propagation (DUP) were introduced in (Iyengar & Challenger, 1998; Challenger
et al., 1999). DUP maintains the correspondence between objects (defined to be
cacheable items) and underlying data, which change and affect the values of
objects. Dependencies between objects and data are recorded in the ODG. A vertex
in this graph corresponds to an object or a datum. An edge from a vertex d to a vertex
o indicates that a change to d affects o. By transitivity, “hidden” dependencies exist
in ODG as well. Using graph traversal algorithms (depth-first, breadth-first) we can
determine the objects affected by changes to base data.

As a simple concrete example, consider a site serving stock related information,
which uses a relational database consisting of a table STOCK_INFO(stockName,
currentPrice, exchangeVolume) and two dynamically generated HTML pages
(URLs), URL1 publishing the pairs of stockName and currentPrice and a URL2
publishing the pairs of stockName and exchangeVolume. We can represent the
dependencies of these URLs on base data by an ODG as in Figure 2(a) or Figure
2(b). In the left part of the figure, there is only one datum (the base table) and two
objects (URL1 and URL2), whereas in the right part, there exist the same URLs, but
three data (the three columns) of the base table. By appropriately choosing the data,
we can control the coarseness of the dependencies. Based on the dependencies
described in the left part of the figure, any modification on the table results in an
invalidation of both objects, whereas the dependencies expressed in the right part of
the figure allow us to prevent invalidation of URL1 when occur changes only to the
exchangeVolume.

Cache managers maintain directories containing information about cached
objects. This information may include the ODG as well. Upon receiving a notification
for a modified datum they can invalidate the objects depended on it. Obviously, the
object dependencies are communicated to caches by the application programs that
generate the objects. The invalidation events can be generated by trigger mecha-

 URL1

STOCK_INFO

URL2

(a)

URL1 URL2

STOCK_INFO::stockName STOCK_INFO::currentPrice STOCK_INFO::exchnageVolume

(b)

Figure 2: Examples of the object dependence graph representing different
coarseness dependencies between objects and base data

Cache Management for Web-Powered Databases 223

nisms or specially crafted application scripts (Challenger et al., 1999). Of course, this
presents a complication, since the DBMS, the application servers and caches may
be independent components, but the success of the system in (Challenger et al.,
1999), which served as the Web site for the Winter Olympic Games of 1998,
demonstrates the feasibility of deploying similar solutions.

PREFETCHING
We pointed out earlier (see Section “Background”) that caching has limitations.

It is not useful for first-time referenced objects, and its usefulness decreases when
objects tend to change frequently. To cure caching’s reactive nature, prefetching
has been proposed in order to enhance its content. Prefetching is the process of
deducing future requests for objects and bringing those objects into the cache before
an explicit request is made for them. Prefetching presents a fundamental tradeoff;
the more objects are brought into the cache the greater is the probability of a cache
hit, but so is the generated traffic. An effective and efficient prefetching scheme
should maximize the number of hits due to its action and at the same time minimize
the incurred cost due to the prefetched objects. This cost may represent cache space,
bandwidth, etc.

The core issue in employing a prefetching scheme is the deduction of future
requests. What is needed is a mechanism that will “suggest” objects to be
prefetched from their origin location, the “server”. In general, there exist two
possibilities for the deduction of future references. Either there is complete
knowledge about them or they must be predicted. The former is called informed
and the latter predictive prefetching.

Informed prefetching occurs in cases where the client (e.g., an application
program) knows exactly the resources is going to request in the near future and
reveals them into the cache (Patterson et al., 1995; Cao et al., 1996). The latter is
responsible for programming its caching and prefetching decisions in order to
increase its performance. Informed prefetching is actually a scheduling policy
subject to a set of constraints regarding cache space, timeliness of prefetching and
available bandwidth. This model requires the communication bandwidth between the
applications and the cache to be stable and thus can be implemented only in cases
where the cache is somehow embedded into the application, e.g., databases,
operating systems, etc.

Informed prefetching is completely exonerated from the burden of guessing
which objects will be requested. Currently, such a situation where an application
knows exactly its future requests is not frequent in the Web, because requests are
not generated by a few programmed sources, as happens in the case of operating or
database systems, but originate directly from Web clients (usually humans).
Moreover, in the Web we cannot assume fixed bandwidth between the cache and
the origin location of the data. We cannot assume this even for caches inside the Web-
powered database, because their load depends on the external Web client requests.

224 Katsaros & Manolopoulos

Predictive Prefetching for the Web
In the Web, we need an alternative mechanism for deducing future references.

The only possibility is to take advantage of the spatial locality present in Web
request streams. Spatial locality captures the co-reference of some resources and
it is revealed as “regularity patterns” in the request streams. Studies examining
request streams in proxy and Web servers (Almeida et al., 1996) confirmed the
existence of spatial locality. The remaining issue is to “quantify” spatial locality, that
is, to discover the dependencies between references for different data. Such
dependencies can be discovered from past requests for resources19 and used for
making predictions about future requests. The dependencies, which can be ex-
pressed as rules, drive prefetching decisions. In other words, they select which
objects will be prefetched.

In what follows, we will describe the general form of a Markov predictor. In the
sequel, we will present the three families into which the existing prefetching
algorithms can be categorized and will also explain how they can be interpreted as
Markov predictors. Their interpretation as Markov predictor is important in order to
understand their differences and shortcomings.

Markov Predictors
Let Tr = <tr1,�, trk> be a sequence of consecutive requests for documents

(called transaction) made by a client. Let also, S=<d1,�, dn>, n≤ k, be a sequence
of accesses, which is a subsequence20 of this transaction. Given a collection of client
transactions, the probability P(S) of an access sequence S is the normalized number
of occurrences of S inside the collection of transactions. Thus, if the total number of
transactions is nTr, and the sequence S appears fr(S) times inside this collection, then
P(S)=fr(S)/nTR.

Let S = <d1,�, dn> be a sequence of accesses. Then the conditional probability
that the next accesses will be to dn+1,�,dn+m is P(dn+1,�,dn+m | d1,�, dn). This
probability is equal to:

)(
),...,,,....,(,..., 1

n1

mnnn1
n1mn1n

, d,dP
ddddP), d,| ddP(d

…
=… ++

++

Therefore, given a collection of client transactions, rules of the form
d1 ,�, dn Þ dn+1 ,�, dn+m (2)

can be derived, where P(dn+1,�,dn+m | d1,�, dn) is equal to or larger than a user-
defined cut-off value Tc. P(dn+1,�,dn+m | d1,�, dn) is the confidence of the rule. The
left part of the rule is called the head and the right part is called the body of the rule.

The dependency of forthcoming accesses on past accesses defines a Markov
chain. The number of past accesses considered in each rule for the calculation of
the corresponding conditional probability is called the order of the rule. For instance,
the order of the rule A,B ⇒ C is 2.

Definition 5 (n-m Markov predictor). An n-m Markov predictor calculates
conditional probabilities P(dn+1, �, dn+m | d1, �, dn) between document accesses and

Cache Management for Web-Powered Databases 225

discovers rules of the form (2). The head of each rule has size equal to n and the body
has maximum size equal to m.

A predictive prefetching algorithm can be defined as a collection of 1-m, 2-
m,�, n-m Markov predictors.

Below we present the three families into which existing predictive prefetching
mechanisms for the Web can be categorized. The first two are adopted from the
context of operating and database systems, whereas the third is particularly suited
for the Web environment.

Dependency Graph (DG)
The algorithms belonging to this family are based on the concept of the

Dependency Graph (DG). This concept was originally proposed in the context of
operating systems (Griffioen & Appleton, 1994) and was later adopted in the Web
(Padmanabhan & Mogul, 1996, Cohen, Krishnamurthy & Rexford, 1999; Jiang &
Kleinrock, 1998).

The DG depicts the pattern of access to different objects. The graph has a node
for each object that has ever been accessed. There is an arc from node X to node
Y, if and only if at some point in time, Y was accessed within w accesses after X and
both accesses were done by the same client21. The user-specified parameter w is
called the lookahead window. We maintain the following information in the graph:
a) the number of accesses to each node X and b) the number of transitions from node
X to node Y. The confidence of a rule, say XÞY, is the ratio of the number of
transitions from X to Y to the total number of access to X itself. Figure 3(a) depicts
a DG constructed from two request sequences ABCACBD and CCABCBCA. The
numbers on the arcs denote the number of transitions from the source to the target
of the arc, whereas the numbers next to each node denote the number of accesses
to each node.

The Dependency Graph (DG) algorithm uses a 1-1 Markov predictor. It
calculates conditional probabilities P(di | dj) for all di, dj belonging to a transaction,
provided that the number of intervening requests between di, and dj does not exceed
w. It maintains a set of rules of the form di⇒ dj. For a user who has accessed the
sequence of documents Tr =<tr1, �, trn>, DG searches all rules with head trn and
prefetches all documents d for which trn⇒ d is a rule.

Prediction by Partial Match (PPM)
The work by Curewitz, Krishnan and Vitter (Curewitz et al., 1993) identified the

relation between compression schemes and prediction. Thus, they proposed the
adoption of a well-known text compressor, namely the Predictor by Partial
Match, in order to carry out predictive prefetching in object databases. Its
usefulness was later investigated in the Web environment (Fan, Cao, Lin &
Jacobson, 1999; Palpanas & Mendelzon, 1999; Chen, Park & Yu, 1998;
Deshpande & Karypis, 2001).

The PPM scheme is based on the notion of a k-order PPM predictor. A k-order
PPM predictor maintains j-1 Markov predictors, for all 1≤ j≤ k. It employs a Markov

226 Katsaros & Manolopoulos

predictor, which has the constraint that the preceding j “events” must be consecutive
in the request stream. A PPM predictor is depicted as a tree where each path or
subpath that emanates from the root corresponds to a distinct sequence of
consecutive requests. A k-order PPM can be constructed from a collection of
transactions as follows: we move a “sliding window” of size j (for all j=1,2,..,k+1)
over each transaction. For every sequence of accesses of length j, we either create
a new path of length j in the tree initializing its associated counter to 1, or (in case such
a path already exists) we simply increment by one the counter of the path. Figure 3(b)
illustrates a 2nd order PPM predictor, where paths emanate from the tree root with
maximum length equal to k+1=2+1 (=3). The counter associated with each node
depicts the number of times this node was requested, after all nodes before it in the
path, were requested. The counter for a child of the root depicts the total number of
appearances of this node in the transactions.

The k-order PPM algorithm uses a collection of 1-1, 2-1, �, k-1 Markov
predictors (k is a user-specified constant) with the additional constraint that accesses
are consecutive. These Markov predictors calculate conditional probabilities of the
form P(dn+1 | dn), P(dn+1 | dn-1, dn), …, P(dn+1 | dn-k+1, �,dpn) and determine the
corresponding rules, which have head sizes equal to 1,2,…,k, respectively.

In summary, we see that the following facts hold, see also (Nanopoulos,
Katsaros & Manolopoulos, 2002):
� DG considers dependencies between pairs of references only (first-order

dependencies). The considered references need not be consecutive.
� PPM considers dependencies not only between pairs of references (higher-

order dependencies). The considered references must be consecutive.
These two facts highlight the inefficiency of DG and PPM schemes to address

the requirements in the Web environment. Due to the hypertextual nature of the Web,
the Web workloads exhibit higher order dependencies between references.

D/1 C/6

B/4 A/4

3

4

1

2

3

3

1

3

D/1

C/2

B/2

B/1

C/1

A/4

D/1

B/4

B/1 A/2

C/3

D/1 C/1

B/1

C/6

B/1 C/1

A/3

A/1

C/1

R

(a) (b)

Figure 3: (a) Dependence graph (lookahead window 2) and (b) Predictor by
partial match for two request streams ABCACBD and CCABCBCA

Cache Management for Web-Powered Databases 227

Higher order dependencies describe the fact that a future reference may depend not
only on one specific reference made in the past, but also on a “longer history”.
Moreover, due to the navigational nature of information seeking in the Web,
correlated references may not be consecutive. Thus, an effective predictive
prefetching scheme should address these requirements.

Prefetching Based on Association Rules Mining�The WMo Algorithm
In (Nanopoulos, Katsaros & Manolopoulos, 2001; Nanopoulos et al., 2002) we

developed the algorithm WMo to address the aforementioned requirements. WMo is
based on the association rules mining paradigm (Agrawal & Srikant, 1994).

The algorithms22 for association rules discovery (e.g., the Apriori (Agrawal &
Srikant, 1994)) process transactional databases and derive rules of the form (2).
They work in several phases. In each phase, they make a pass over the database of
transactions. In the k-th pass, they determine the frequent23 k-itemsets and create
the set of candidate (k+1)-itemsets. In the next pass, they determine the frequent
(k+1)-itemsets, and so on. The frequent 1-itemsets are the frequent items appearing
in the transactions database. After the discovery of all the frequent itemsets, they
make one pass over the database in order to determine the association rules.

Apriori-like algorithms are not appropriate for deriving prefetching rules for the
Web. Their shortcoming is that they do not take into account the ordering of the items
inside a transaction. In (Nanopoulos et al., 2002) the WMo algorithm was proposed
and showed that generalizes the existing prefetching algorithms (the algorithms
belonging to the family of DG and PPM). WMo works like the standard Apriori
algorithm, but has a different candidate generation procedure in order to address the
particularities of the Web mentioned earlier.

In WMo, unlike the standard Apriori, an itemset24 is “supported” by a
transaction if the itemset is a subsequence of the transaction. Recall that in the
Apriori, an itemset is “supported” by a transaction if it is a subset of the transaction.
Thus, the WMo takes into account the ordering between the accesses in a transaction.
This feature is very important for the purposes of Web prefetching, because a rule
like AÞB is apparently different than a rule BÞA. The WMo algorithm is able to
produce both rules (if they exist), whereas the Apriori would have produced only one
of them. WMo achieves this by adopting a different candidate generation procedure
which works as follows: let two frequent (k-1) itemsets be L1=<p1,�,pk-1> and
L2=<q1,�,qk-1>. If pi=qi for all i=1,2�,k-2, then WMo produces both candidates
C1=<p1,�,pk-1,qk-1> and C2=<q1,�,qk-1,pk-1> Whereas the Apriori would have
produced only the first of them.

Due to its Apriori-like nature, the WMo algorithm is able to produce rules of the
form (2). It is obvious also, that WMo uses a collection of 1-m, 2-m, �, k-m Markov
predictors (k is determined by the data and not prespecified as in PPM) without the
constraint that accesses should be consecutive. Thus, WMo addresses the require-
ments of the Web environment. In (Nanopoulos et al. 2001; Nanopoulos et al. 2002),
extensive experiments are presented that confirm the superiority of WMo, which
combines the virtues of PPM and DG.

228 Katsaros & Manolopoulos

Discussion
All three schemes presented earlier, address the question of what to prefetch.

But, in designing an efficient and effective prefetching scheme two more questions
must be answered. When to prefetch and where to place prefetched data.
Prefetching must be timely. If a prefetching is issued too early, it might displace useful
data from cache. If it is issued too late, the prefetched data may arrive late and thus
do not contribute in latency reduction. The question of when to prefetch has not been
addressed in the Web yet, since the Internet bandwidth varies from time to time and
the load on Web/application servers may experience high peaks. The question of
where to place prefetched data has not been addressed either. There are many
alternatives, as many as the locations where a cache can be placed in the data flow
path. Each such choice provides diverse opportunities for improving the perfor-
mance and varying complications in its deployment.

In this section we have presented three methods for deriving predictions, which
can be used by a predictive prefetching scheme for the Web. Although, prediction
is the core issue in such a scheme, a lot of work must be done before prefetching can
be efficiently employed in the Web environment.

WEB CACHES IN COMMERCIAL PRODUCTS
In this section we will present how cache consistency and replacement is

managed in a commercial proxy server, the Squid proxy cache, and in a high
performance Web-powered database, the Oracle9i Application Server
(Oracle9iAS).25 Moreover, we will briefly comment on some efforts in augmenting
the functionality of commercial products with prefetching capabilities.

Cache Management in Proxy Caches
The Squid proxy. One of the most popular proxy servers used today is the

Squid proxy (Squid, 2001). Squid implements both disk-resident and main memory
caching of objects retrieved from Web servers. The default replacement policy is the
list-based LRU26. Moreover, it implements a “watermarking” policy to reclaim
cache space. It periodically runs an algorithm to evict objects from cache when its
utilization exceeds a watermark level. There are two watermark levels, a “low-water
mark” and a “high-water” level. Replacement begins when the swap (disk) usage
is above the low-water mark and attempts to maintain the utilization near the low-
water mark. If the utilization is close to the low-water mark, less replacement is done
each time. As the swap utilization gets close to the high-water mark, the object
eviction becomes more aggressive. Finally, Squid implements a size-based object
admission policy enabling the determination of the objects that will enter the cache.
A minimum and a maximum value for the size of the objects can be defined.

Squid switched from a TTL-based expiration model to a Refresh-Rate model.
Objects are no longer purged from the cache when they expire. Instead of assigning
TTL’s when the objects enter the cache, freshness requirements are now checked

Cache Management for Web-Powered Databases 229

when the objects are requested. If an object is “fresh”, it is given directly to the client.
If it is “stale”, then an If-Modified-Since request is made for it. When checking the
object freshness, the Squid calculates the following values:
� AGE, is how much the object has aged since it was retrieved, that is:

AGE = NOW - OBJECT_AGE.
� LM_AGE, is how old the object was when it was retrieved, that is:

LM_AGE = OBJECT_DATE - LAST_MODIFIED_TIME.
� LM_FACTOR, is the ratio of AGE to LM_AGE, that is:

LM_FACTOR = AGE / LM_AGE.
� CLIENT_MAX_AGE, is the (optional) maximum object age that the client will

accept, as taken from the HTTP/1.1 Cache-Control request header.
� EXPIRES, is the (optional) expiry time from the server reply headers.

These values are compared with the parameters of the “refresh pattern” rules.
The refresh parameters are the following: MIN_AGE, PERCENT, MAX_AGE.

The following algorithm is applied for determining if an object is fresh or stale:

Algorithm 2 (Squid�s Cache Refresh Model (Squid, 2001))
(1). BEGIN
(2). if(exists(CLIENT_MAX_AGE))
(3). if(AGE > CLIENT_MAX_AGE) return STALE
(4). if (AGE ≤ MIN_AGE) return FRESH
(5). if (exists(EXPIRES))
(6). if(EXPIRES ≤ NOW) return STALE
(7). else return FRESH
(8). if(AGE > MAX_AGE) return STALE
(9). if(LM_FACTOR < PERCENT) return FRESH
(10). return STALE
(11). END

Other proxies. The Apache(Apache, 2001) proxy cache uses TTL-based
consistency as well. The object’s lifetime is computed from the server-supplied
Expires response header when it is present; otherwise it is computed as a portion
from the last modification time (using the Last-Modified response header) of the
object. So, TTL_Apache = weight_factor*(NOW- Last-Modified). The Jig-
saw (Jigsaw, 2001) proxy server is TTL-based as well. TTL’s for cached objects
are set from the Expires response headers. If they are not present, TTL is default
set to 24 hours.

Cache Management in Oracle9iAS
Before describing how Oracle9iAS deals with dynamic data caching, we will

briefly present the performance problems encountered by high-load Web-powered
databases and will also present a couple of architecture alternatives employing
caches to improve their scalability and performance.

Many database-backed Web sites receive millions of requests per day. Such
Web sites are those offering news on a “hot” event in progress (e.g., a major sports

230 Katsaros & Manolopoulos

event) or search engines’ sites. Since the time required to serve a dynamic page can
be orders of magnitude larger than the respective time for a static page, it is clear that
the Web server may experience a very high load during peak times. This is also true
for the application server that creates the Web pages and the underlying database
from where it retrieves the relevant data. In order to increase the scalability of the
whole system and at the same time improve efficiency, many Web sites increase the
number of Web servers, so as to reduce the per-server load, thus resulting in a cluster
of Web servers (Web server farm). In most of the times, this scheme has a front-
end load distributor27, which is responsible for distributing more evenly the load
among the machines of the farm. Figure 4 depicts this architecture.28

The standard configuration in such a cluster of Web servers is to replicate the
database itself (Figure 4(a)). This scheme is very simple, but it does not cache
dynamically generated pages and moreover it is very difficult to keep the database
replicas synchronized. An alternative is to avoid replicating the database, but provide
instead a middle-tier cache (depicted in Figure 4(b)) in order to reduce the database
load. This scheme cannot avoid the redundancy of computation at the Web and
application servers and it requires synchronization between middle-tier caches and
the database. Finally, another scheme is to provide the cluster with a front-end cache
(depicted in Figure 4(c)). This cache is capable of caching dynamic content
forwarding any requests resulting in a cache miss into the servers of the cluster. This
architecture provides a separation between content publication, handled by the
front-end cache, and content generation, handled by the Web and application
servers and the underlying database. It avoids database replication and multiple
caches, but the challenge it faces is to stay coherent. This cache is sometimes
referred to as server acceleration or reverse proxy cache.29

The Oracle Web Cache
Oracle30 has employed the third architecture, depicted in Figure 4(c) aug-

mented with middle-tier data caches at the Web servers or application serves. The
front-end cache is called Web Cache, whereas the middle-tier caches are referred
to as Data Caches.

The purpose of a Data Cache it to avoid burdening the database backend by
caching base data. As base data is considered any collection of data that can be
expressed using a SQL SELECT statement. They can be a table, or any subset of a
table or data from more than one table. The synchronization policy of these caches
establishes how and how often the cached data are refreshed. The synchronization
may be either (a) incremental, refreshing only that portion of the data that have been
modified, or (b) complete, by deleting the locally cached data and retrieving them
again from the origin database. The first option is favorable when there is a large
amount of cached data whereas the second is better when a large percentage of the
data changes or when the bathed updates are loaded into the origin database. The
scheduling of synchronization can be done either automatically at specified time
intervals or manually with the aid of the Cache Manager.

Cache Management for Web-Powered Databases 231

Oracle9iAS Web Cache provides server acceleration and server load balancing
at the same time. It front-ends a collection of Web and application servers (see Figure
4(c)). It lightens the load of busy Web servers by storing frequently accessed pages
in memory, eliminating the need to repeatedly process requests for those pages on
middle tier servers. It can cache both static and dynamic content. It can cache full
and partial-pages as well as personalized pages (pages containing cookies and
personalized content e.g., personal greetings).

Oracle9iAS Web Cache provides both strong and weak consistency through a
combination of invalidation messages and expiration. This way, it is able to support
applications that can tolerate non-recent data (e.g., weather forecasts) and others,
accepting only fresh data (e.g., stock prices).

Data invalidation can be performed in two ways, by the use of an expiration
policy for the cached objects or by sending an XML/HTTP invalidation message
to the Web Cache host machine.

Expiration Policies. An expiration policy can be set in one of the following
three ways:

Load
Distributor

client client

INTERNET

data
base

Web sever

application
server

Web sever

application
server

data
base

Load
Distributor

client client

INTERNET

data
base

Web sever

application
server

Web sever

application
server

cache cache

data
base

Web sever

application
server

Web sever

application
server

Load
Distributor

Front-end
cache

client client

INTERNET

(a) (b) (c)

Figure 4: A typical architecture of a Web-powered database in a Web server
farm

232 Katsaros & Manolopoulos

1. Expire <time> after entering the cache.
2. Expire <time> after object creation (This option relies on the Last-Modified

header generated by the origin Web server).
3. Expires as per HTTP Expires response header.

Expirations are primary used when content changes can be accurately predicted.
XML/HTML invalidation messages. When content changes are less pre-

dictable and more frequent, then a mechanism based on messages is necessary for
maintaining cache coherency. Oracle9iAS Web Cache’s invalidation messages are
HTTP POST requests carrying an XML payload. The XML-formatted part of the
POST request informs the cache about which URL’s to mark as stale. An
invalidation message can be sent in one of the following ways:
1. Manually, using the Telnet protocol to connect to the Web Cache’s host

machine or the Web Cache Manager.
2. Automatically, using database triggers, scripts or applications

a. Triggers. A trigger stored in a database can include SQL, PL/SQL or JAVA
statements to execute as a unit.
b. Scripts. Since many Web sites use scripts (e.g., PERL scripts) to insert new
data into the database and the file system, Web Cache provides the opportunity
for modifying the scripts so as to send an invalidation message to the cache.
c. Applications. Invalidation messages can be generated by a Web site’s
underlying application logic or from the content management application
used to design Web pages. Oracle9iAS Web Cache ships with C and JAVA
code that enables developers to embed invalidation mechanisms directly
into their applications.
Invalidated objects in the Web Cache can be either garbage-collected and thus

never be served stale from the Web Cache or can be refreshed by sending a request
to the origin application Web server. This second option depends on the origin
application Web server’s capacity.

Prefetching in Commercial Products
Currently, no commercial Web (proxy) server implements prefetching. This

is due to the complexity of prefetching in synchronizing the server and the cache
and the lack of support from HTTP 1.1. Although commercial products do not
have prefetching capabilities, several research efforts have resulted in augment-
ing commercial products with prefetching. To mention the most important of
them, the WebCompanion (Klemm, 1999) is a client-side prefetching agent
implemented as a proxy on the client’s browser and is based on prefetching the
embedded links of a page. P-Jigsaw (Bin & Bressan, 2001) is an extension to
Jigsaw Web server, implementing prefetching in the Web server based on a
simplified form of association rule discovery (Bin, Bressan, Ooi & Tan, 2001).
(Cohen, Krishnamurthy & Rexford, 1998) implements prefetching between Web
servers and proxy caches by constructing volumes of related resources through
the Dependency Graph.

Cache Management for Web-Powered Databases 233

EMERGING AND FUTURE TRENDS
Content Delivery Networks

The Internet “miracle” is based on a growing set of standardized, intercon-
nected networks and a standard for information publishing and viewing, the Web and
browsers. We all know that the Internet, and consequenlty the Web, faces
performance problems. Performance problems arise in any of the following three
general areas:
� Web server processing delays. Servers can’t keep up with peak loads

presented, unless the site is built with overcapacity.
� Internet delays. Beyond USA, network capacity diminishes rapidly. More-

over, the data exchange points between the various networks that constitute the
Internet (peering points) become overloaded and lose packets thus requiring
the packets to be resent.

� �Last-mile� delays (delays between the subscriber and the Internet e.g., due
to a slow dial-up modem connection).
Increasing the number of Web (and application) servers (Web server farms)

does provide a solution for the first problem but can do nothing for the other two.
Caching at various points in the network can improve performance substantially, but
these caches usually suffer from low hit rates (Kroeger et al., 1997). The idea in
alleviating these problems is to make content delivery from origin servers more
“distributed”, moving some of their content to the “edge” of the Internet. Based upon
this idea the Content Delivery Networks (CDN) (Akamai, InfoLibria, etc.)
emerged recently. CDN are designed to take advantage of the geographic locations
of end users. Rather than serving content from the origin Web site, the content
distribution model makes copies of “key” content on multiple content delivery
servers sites distributed through the Internet, close to the users requesting that
content. “Key” content may represent popular or bandwidth-demanding objects
(graphics, streaming media), usually static content.

A Content Delivery Network, like Akamai’s FreeFlow, runs on thousands of
servers distributed across the Internet at Network Provider operations centers,
universities, corporate campuses and other locations with a large number of Web
visitors. A CDN contracts with content providers (e.g., Yahoo!) to deliver their
content. The content publisher can control what pieces of content to “outsource” to
the CDN provider, by replacing existing HREF tags in the content’s owner’s HTML
with tags that point to the CDN provider’s domain, which has already obtained a copy
of the content to be delivered. Thus, a client request first goes to the origin Web
server, which will return an HTML page with references for graphics and other
objects to the content delivery network. Then, the client will request the “outsourced”
content from the CDN provider. Figure 5 depicts how the content distribution
model operates.

Content distribution services address efficiently the aforementioned perfor-
mance problems.
• With the “hottest” content “outsourced”, the load on the origin server is reduced.

234 Katsaros & Manolopoulos

• The connection from a local content delivery server is shorter than between the
origin Web server and the user, thus reducing latency.

• Since the CDN servers are shared by many users this service greatly increases
the hit ratio.
Though CDN servers operate like a conventional cache, they differ in that they get

only requests for those objects that they are contracted to serve. Thus, their “hit ratio”
is 100%. CDN do not replace normal caches since they work in an “orthogonal” axis.
CDN optimize content access for specific paying content publishers, while an Internet
cache optimizes content access for a community of subscribers.

CDN�s have been proven successful in delivering static content (e.g., streaming
media), but services in the Web move quickly from read-only to transactional.
Millions of users might visit a site per day and perform an analogous number of
transactions e.g., in an on-line auctions site. Thus, scalability issues must be
effectively addressed in these sites. The primary question is whether CDN can be
employed in delivering dynamic content.

Currently, several companies (Akamai, Zembu) proposed architectures for
delivering dynamic content from the “edge” of the Internet. The basic idea is to
separate the Content Generation Tier from the Content Assembly and Delivery
Tier. The former is typically centrally maintained in an enterprise data center and its
primary function is application coordination and communication to generate the
information that is to be published. It typically consists of application servers, policy
servers, data and transaction servers and storage management. The latter, residing
in the “edge” of the Internet, consists of servers (“edge servers”) that perform
content caching and assembly of pages. These two tiers communicate through a
simple Integration Tier, consisting of a few Web servers serving as the HTTP
communication gateways. Although this distributed infrastructure is commercialized
by some companies (e.g., Akamai�s EdgeSuite) and employed by several content

INTERNET 2
1

Origin Web server
Web client

4

4

1

3
2

3

CDN Cache Servers

Figure 5: The content distribution model

Cache Management for Web-Powered Databases 235

providers (CNN, McAffee), work is still needed in the field of cache management
in order to address the issues of scalability.

In such a large scale distribution, where “edge servers” are geographically
distributed over a wide area network (Internet), the issue of cache invalidation and
update scheduling is very crucial, in order to guarantee strong cache consistency.
Recent work on update scheduling focuses only on centrally managed Web-powered
databases (Labrinidis & Roussopoulos, 2001) and does not address many important
issues like update deadlines, staleness tolerance. Moreover, cache management in
the “edge servers” raises some issues for the cache replacement, as well. Traditional
policies like LRU, are not be adequate for these caches, and novel ones are required
(e.g., Least Likely to be Used (LLU) (Datta et al., 2001)) that take into account the
derivation dependencies between cached objects.

Processing Power to the Clients
Apart from employing the sophisticated solution of CDNs in order to relieve

the origin data servers from heavy load, simpler solutions could help towards this
goal, as well. Such solutions could exploit current proxy caches, which should
only become “smarter”.

Semantic caching mechanisms (Dar, Franklin, Jonsson, Srivastava & Tan,
1996) could provide significant performance benefits provided that they become
more sophisticated than the current proposals (Chidlovskii & Borghoff, 2000),
maybe through the cooperation with the origin data server, as proposed in (Luo
& Naughton, 2001).

Another alternative would be to migrate not only data closer to the clients but
some data processing capabilities, as well. So having the server to provide along with
the data, code portions that implement part of its processing logic could improve
performance and reduce latency significantly. This is because cached data can be
processed by their associated code in order to answer queries different from those
that resulted in caching the specific data. Pioneering work based on this idea was
implemented for proxy caches in (Luo, Naughton, Krishnamurthy, Cao & Li, 2000).

CONCLUSION
In this chapter, we have examined the issues of cache replacement and

consistency as well as that of prefetching for Web caches. We were particularly
concerned for caches that store data originating from Web-powered databases. We
demonstrated that caching is essential for improving the performance of such a multi-
tier system.

We presented the most important policies proposed so far for the issue of cache
replacement. Through this presentation became clear that any successful replace-
ment algorithm should take into account the object’s size and cost in such a manner
that it presents no complexity in making replacement decisions. We discussed how
cache consistency can be maintained and concluded that, since Web applications

236 Katsaros & Manolopoulos

require both strong and weak consistency, a combination of invalidation and
expiration policies is the best solution.

We also described a common context so as to treat existing predictive
prefetching algorithms as Markov predictors. Through this description, the supe-
riority of WMo become clear, since it was specifically designed to address the
requirements of the Web environment, namely, higher order dependencies and non-
consecutiveness between correlated references.

Finally, we presented the ideas behind the emerging trend of Content Distri-
bution Networks, that attempt to make the Web a really distributed database by
moving data closer to their consumers. We highlighted the challenges related to
caching behind their architectural design. Moreover, we pointed out some areas
where future work should concentrate. We believe that future work should
concentrate on two targets. Firstly, to move data closer to the clients, as Content
Distribution Networks do currently and secondly to move some “application logic”
closer to the clients, in order to improve the scalability.

ENDNOTES
1 The number of appearances of an item in a stream is called the popularity

profile of the item.
2 This path will be called data flow path in the sequel.
3 The reader can refer to (Oracle, 2001) for more information on this topic.
4 Longest Forward Distance.
5 Cost Inverse Forward Distance.
6 Presented in (Abrams, Standridge, Abdulla, Fox & Williams, 1996).
7 Not referenced in the future.
8 Policies like LRU, LFU, SIZE, can be regarded as function-based policies as

well, where the utility function is the inverse of recency, frequency and inverse of
size, respectively. They can be regarded as key-based policies as well having only
a primary key.

9 These two assumptions determine the Independent Reference Model.
10 The number of such groups is usually small.
11 Details on how the value of the constants c, ³1, ³2 is computed can be found

in (Rizzo & Vicisano, 2000).
12 Available in the response message from the server.
13 Here, by “client” we mean any location in the data flow path (see Section

“Introduction”) that caches data originating from a “server” location.
14 In the Web there is usually a single “writer” (the server) and multiple

“readers” (the clients).
15 More info on the techniques for identificating clients can be found in (Kristol,

2001) and (Oracle, 2001).
16 In case the original server is unreachable due to failure or network partition,

then the cache can inform the client that the data are potentially stale and the client
can take an “application-depended” decision.

Cache Management for Web-Powered Databases 237

17 Provided that it has recorded it on the secondary storage.
18 Leases fall into server-driven protocols since it is the server that grants

the leases.
19 Recorded in Web server log files.
20 By the term subsequence, we mean that the elements of S need not be

necessarily consecutive in Tr.
21 Or by the same application or the same process.
22 We assume standard knowledge of the problem of mining association rules

and of the Apriori algorithm (Agrawal & Srikant, 1994).
23 The itemsets whose support exceeds a user-defined support threshold.
24 We use the term “itemset” for the WMo as well, although we should use the

term “itemsequence”.
25 Oracle is a registered trademark of Oracle Corporation.
26 Objects are maintained in sorted order of their last access in a list (list-based

LRU) and not in a heap (heap-based LRU).
27 Instead of using Round Robin DNS.
28 Note that for Web-powered databases, replicating only the Web server is not

enough for scaling up the whole system. The application server must be replicated
as well.

29 A proxy server caches content from an infinite number of sources, whereas
a server accelerator caches content for one or a handful of origin servers.

30 All information in Subsection “The Oracle Web Cache” is based on (Oracle,
2001). Consequently, newer releases of the product may turn this material obsolete.

REFERENCES
Abrams, M., Standridge, C., Abdulla, G., Fox, E. and Williams, S. (1996). Removal

policies in network caches for World Wide Web documents. Proceedings of
the ACM Conference on Applications, Technologies, Architectures and
Protocols for Computer Communications (ACM SIGCOMM�96), 293-305.

Aggrawal, C., Wolf, J. and Yu, P. (1999). Caching on the World Wide Web. IEEE
Transactions on Knowledge and Data Engineering (IEEE TKDE), 11(1),
94-107.

Agrawal, R. and Srikant, R. (1994). Fast algorithms for mining association rules in
large databases. Proceedings of the 20th International Conference on Very
Large Databases (VLDB�94), 487-499.

Almeida, V., Bestavros, A., Crovella, M. and de Oliveira, A. (1996). Characterizing
reference locality in the WWW. Proceedings of the 4th IEEE Conference on
Parallel and Distributed Information Systems (IEEE PDIS�96), 92-103.

Apache. (2001). Apache 1.2.6 HTTP server documentation. Retrieved August 30,
2001, from http://www.apache.org.

Atzeni, P., Mecca, G. and Merialdo, P. (1998). Design and maintenance of data-
intensive Web sites. Proceedings of the 6th International Conference on

238 Katsaros & Manolopoulos

Extending Database Technology, (EDBT�98), Lecture Notes in Computer
Science, 1377, 436-450.

Belady, L. A. (1966). A study of replacement algorithms for a virtual-storage
computer. IBM Systems Journal, 5(2), 78-101.

Berners-Lee, T., Caililiau, R., Luotonen, A., Nielsen, H. F. and Secret, A. (1994).
The World-Wide Web. Communications of the ACM (CACM), 37(8), 76-82.

Bin, D. L. and Bressan, S. (2001). P-Jigsaw: Extending Jigsaw with rules assisted
cache management. Proceedings of 10th World Wide Web Conference
(WWW10), 178-187.

Bin, D. L., Bressan, S., Ooi, B. C. and Tan, K.L. (2000). Rule-assisted prefetching
in Web-server caching. Proceedings of ACM International Conference on
Information and Knowledge Management (ACM CIKM�00), 504-511.

Breslau, L., Cao, P., Fan, L., Phillips, G. and Shenker, S. (1999). Web caching and
Zipf-like distributions: Evidence and implications. Proceedings of the IEEE
Conference on Computer Communications (IEEE INFOCOMM�99), 126-
134.

Cao, P., Felten, E. W., Karlin, A. R. and Li, K. (1996). Implementation and
performance of integrated application-controlled file caching, prefetching, and
disk scheduling. ACM Transactions On Computer Systems (ACM TOCS),
14(4), 311-343.

Cao, P. and Irani, S. (1997). Cost-aware WWW proxy caching algorithms.
Proceedings of the USENIX Symposium on Internet Technologies and
Systems (USITS�97), 193-206.

Cao, P. and Liu, C. (1998). Maintaining strong cache consistency in the World Wide
Web. IEEE Transactions on Computers (IEEE TOC), 47(4), 445-457.

Cate, V. (1992). Alex–A global file system. Proceedings of the USENIX File
System Workshop, 1-12.

Challenger, J., Iyengar, A. and Dantzig, P. (1999). A scalable system for consistently
caching dynamic Web data. Proceedings of the IEEE International Confer-
ence on Computer Communications (IEEE INFOCOM�99).

Chen, M. S., Park, J. S. and Yu, P. S. (1998). Efficient data mining for path traversal
patterns. IEEE Transactions on Knowledge and Data Engineering (IEEE
TKDE), 10(2), 209-221.

Chidlovskii, B. and Borghoff, U. (1999). Semantic caching of Web queries. The
VLDB Journal, 9(1), 2-17.

Coffman, E. and Denning, P. (1973). Operating Systems Theory. Englewood
Cliffs, NJ: Prentice-Hall.

Cohen, E., Krishnamurthy, B. anbd Rexford, J. (1998). Improving end-to-end
performance of the Web using server volumes and proxy filters. Proceedings
of ACM International Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communication (ACM
SIGCOMM�98), 241-253.

Cache Management for Web-Powered Databases 239

Cohen, E., Krishnamurthy, B. and Rexford, J. (1999). Efficient algorithms for
predicting requests to Web servers. Proceedings of the IEEE International
Conference on Computer Communications (IEEE INFOCOM�99), 284-
293.

Curewitz, K., Krishnan, P. and Vitter, J.S. (1993). Practical prefetching via data
compression. Proceedings of the ACM International Conference on
Management of Data (ACM SIGMOD�93), 257-266.

Dar, S., Franklin, M., Jonsson, B., Srivastava, D. and Tan, M. (1996). Semantic data
caching and replacement. Proceedings of 22nd International Conference
on Very Large Data Bases (VLDB�96), 330-341.

Datta, A., Dutta, K., Thomas, H., VanderMeer, D., Ramamritham, K. and Fishman,
D. (2001). A comparative study of alternative middle tier caching solutions to
support dynamic Web content acceleration. Proceedings of 27th Interna-
tional Conference on Very Large Data Bases (VLDB�01), 667-670.

Denning, P. and Schwartz, S. (1972). Properties of the Working-Set model.
Communications of the ACM (CACM), 15(3), 191-198.

Deshpande, M. and Karypis, G. (2001). Selective Markov models for predicting
Web-page accesses. Proceedings of the 1st SIAM Conference on Data
Mining (SDM�01).

Dilley, J. and Arlitt, M. (1999). Improving proxy cache performnace: Analysis of
three replacement policies. IEEE Internet Computing, 3(6), 44-55.

Duvvuri, V., & Shenoy, P. and Tewari, R. (2000). Adaptive Leases: A strong
consistency mechanism for the World Wide Web. Proceedings of the 19th

IEEE Conference on Computer Communications (IEEE INFOCOM�00),
834-843.

Fan, L., Cao, P., Lin, W. and Jacobson, Q. (1999). Web prefetching between low-
bandwidth clients and proxies: Potential and performance. Proceedings of
ACM International Conference on Measurement and Modeling of Com-
puter Systems (ACM SIGMETRICS�99), 178-187.

Franklin, M., Carey, M. and Livny, M. (1997). Transactional client-server cache
consistency: Alternatives and performance. ACM Transactions On Data-
base Systems (ACM TODS), 22(3), 315-363.

Garey, M. and Johnson, D. (1979). Computers and Intractability: A Guide to the
Theory of NP-Completeness. New York: W.H. Freeman and Company.

Gray, C. and Cheriton, D. (1989). Leases: An efficient fault-tolerant mechanism for
distributed file cache consistency. Proceedings of the 12th ACM Symposium
on Operating Systems Principles (ACM SOSP�89), 202-210.

Greenspun, P. (1999). Philip and Alex�s Guide to Web Publishing. New York:
Morgan Kaufmann.

Griffioen, J. and Appleton, R. (1994). Reducing file system latency using a predictive
approach. Proceedings of the Summer USENIX Conference, 197-207.

Hosseini-Khayat, S. (1997). Investigation of generalized caching. PhD Thesis,
Washington University, Saint Louis, Missouri.

240 Katsaros & Manolopoulos

Hosseini-Khayat, S. (2000). On optimal replacement of nonuniform cache objects.
IEEE Transactions on Computers (IEEE TOC), 49(8), 769-778.

Howard, J., Kazar, M., Menees, S., Nichols, D., Satyanarayanan, M., Sidebotham,
R. and West, M. (1988). Scale and performance in a distributed file system.
ACM Transactions On Computer Systems (ACM TOCS), 6(1), 51-81.

Iyengar, A. and Challenger, J. (1998). Data update propagation: A method for
determining how changes to underlying data affect cached objects on the Web.
Technical Report, IBM Research Division, RC 21093(94368).

Jiang, Z. and Kleinrock, L. (1998). An adaptive network prefetch scheme. IEEE
Journal on Selected Areas in Communications (IEEE JSAC), 16(3), 358-
368.

Jigsaw. (2001). Jigsaw 2.0 HTTP server documentation. Retrieved August 30,
2001 from http://www.w3c.org/Jigsaw.

Jin, S. and Bestavros, A. (2000). Sources and characteristics of Web temporal
locality. Proceedings of the IEEE/ACM Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems (MAS-
COTS�00).

Jin, S. and Bestavros, A. (2001). GreedyDual* Web caching algorithm: Exploiting
the two sources of temporal locality in Web request streams. Computer
Communications, 24(2), 174-183.

Klemm, R. (1999). WebCompanion: A friendly client-side Web prefetching agent.
IEEE Transactions on Knowledge and Data Engineering (IEEE TKDE),
11(4), 577-594.

Korth, H., Silberschatz, A. and Sudarshan, S. (1998). Database System Concepts.
New York: McGraw-Hill.

Kristol, D. (2001). HTTP cookies: Standards, privacy and politics. ACM Transac-
tions on Internet Technology (ACM TOIT), 1(2), 151-198.

Kroeger, T., Long, D. E. and Mogul, J. (1997). Exploring the bounds of Web latency
reduction from caching and prefetching. Proceedings of the USENIX Sympo-
sium on Internet Technologies and Systems (USITS�97), 13-22.

Labrinidis, A. and Roussopoulos, N. (2000). WebView materialization. Proceed-
ings of the ACM International Conference on Management of Data (ACM
SIGMOD�00), 504-511.

Labrinidis, A. and Roussopoulos, N. (2001). Update propagation strategies for
improving the quality of data on the Web. Proceedings of 27th International
Conference on Very Large Data Bases (VLDB�01), 391-400.

Luo, Q. and Naughton, J. (2001). Form-based proxy caching for database-backed
Web sites. Proceedings of 27th International Conference on Very Large
Data Bases (VLDB�01), 191-200.

Luo, Q., Naughton, J., Krishnamurthy, R., Cao, P. and Li, Y. (2000). Active query
caching for database Web servers. The World Wide Web and Databases,
Lecture Notes in Computer Science, 1997, Springer-Verlag, 92-104.

Luotonen, A. and Altis, A. (1994). World Wide Web proxies. Computer Networks
and ISDN Systems, 27(2), 147-154.

Cache Management for Web-Powered Databases 241

Malaika, S. (1998). Resistance is futile: The Web will assimilate your database. IEEE
Data Engineering Bulletin, 21(2), 4-13.

Mattson, R., Gecsei, J., Slutz, D. and Traiger, I. (1970). Evaluation techniques for
storage hierarchies. IBM Systems Journal, 9(2), 78-117.

Nanopoulos, A., Katsaros, D. and Manolopoulos, Y. (2001). Effective prediction of
Web-user accesses: A data mining approach. Proceedings of the Interna-
tional Workshop on �Mining Log Data Across All Customer TouchPoints�
(WEBKDD�01).

Nanopoulos, A., Katsaros, D. and Manolopoulos, Y. (2002). A data mining algorithm
for generalized Web prefetching, IEEE Transactions on Knowledge and
Data Engineering (IEEE TKDE), to appear, 2002.

Nelson, M., Welch, B. and Ousterhout, J. (1988). Caching in the Sprite network file
system. ACM Transactions On Computer Systems (ACM TOCS), 6(1), 134-
154.

Niclausse, N., Liu, Z. and Nain, P. (1998). A new efficient caching policy for the
World Wide Web. Proceedings of the Workshop on Internet Server
Performance (WISP).

O’Neil, E., O’Neil, P. and Weikum, G. (1993). The LRU-K page replacement
algorithm for database disk buffering. Proceedings of the ACM Interna-
tional Conference on Management of Data (ACM SIGMOD�93), 297-306.

Oracle. (2001). Oracle9iAS Web Cache (White paper), June.
Padmanabhan, P. and Mogul, J. (1996). Using predictive prefetching to improve

World Wide Web latency. ACM SIGCOMM Computer Communication
Review, 26(3).

Palpanas, T. and Mendelzon, A. (1999). Web prefetching using partial match
prediction. Proceedings of the 4th Web Caching Workshop (WCW�99).

Patterson, H.R., Gibson, G.A., Ginting, E., Stodolsky, D. and Zelenka, J. (1995).
Informed prefetching and caching. Proceedings of the ACM Symposium on
Operating System Principles (ACM SOSP�95), 79-95.

Rizzo, L. and Vicisano, L. (2000). Replacement policies for a proxy cache. ACM/
IEEE Transactions on Networking (ACM/IEEE TON), 8(2), 158-170.

Robinson, J. and Devarakonda, M. (1990). Data cache management using fre-
quency-based replacement. Proceedings of the ACM Conference on Mea-
surement and Modeling of Computer Systems (ACM SIGMETRICS�90),
134-142.

Rodriguez, P., Spanner, C. and Biersack, E.W. (2001). Analysis of Web caching
architectures: Hierarchical and distributed caching. ACM/IEEE Transactions
on Networking (ACM/IEEE TON), 9(4), 404-418.

Shim, J., Scheuermann, P. and Vingralek, R. (1999). Proxy cache algorithms:
Design, implementation and performance. IEEE Transactions on Knowledge
and Data Engineering (IEEE TKDE), 11(4), 549-562.

Squid. (2001). Squid 2.4 Stable 1 HTTP server documentation, Retrieved August
30, 2001 from http://squid.nlanr.net.

242 Katsaros & Manolopoulos

Tanenbaum, A. (1992). Modern Operating Systems. Englewood Cliffs, NJ:
Prentice-Hall.

Wang, J. (1999). A survey of Web caching schemes for the Internet. ACM
SIGCOMM Computer Communication Review, 29(5).

Wooster, R. and Abrams, M. (1997). Proxy caching that estimates page load delays.
Computer Networks, 29(8-13), 977-986.

Yagoub, K., Florescu, D., Issarny, V. and Valduriez, P. (2000). Caching strategies
for data-intensive Web sites. Proceedings of the 26th International Confer-
ence on Very Large Databases (VLDB�00), 188-199.

Yin, J., Alvisi, L., Dahlin, M. and Iyengar, A. (2001). Engineering server-driven
consistency for large scale dynamic Web services. Proceedings of the 10th

World Wide Web Conference (WWW10), 45-57.
Yin, J., Alvisi, L., Dahlin, M. and Lin, C. (1999). Volume Leases for consistency in

large-scale systems. IEEE Transactions on Knowledge and Data Engi-
neering (IEEE TKDE), 11(4), 563-576.

Young, N. E. (1994). The k-server dual and loose competitiveness for paging.
Algorithmica, 11(6), 525-541.

