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Abstract—The NITOS wireless testbed, is one of the main
building blocks in the wireless testbed experimentation, offered
by the FIRE community, and a core Fed4Fire partner. Its main
focus is on wireless accessed technologies and on all layers of the
protocol stack. In the rapidly changing technological environ-
ment, a unique opportunity is provided to enhance the NITOS
testbed with cloud computing experimentation capabilities and
increase the heterogeneity and diversity of possible services that
can be offered to experimenters/ developers. In this paper we
describe the NITOS approach on adopting cloud technologies and
SDN capabilities and how we upgrade the meaning of ”delivered
service” in testbed experimentation using SOA extensions.
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I. INTRODUCTION

The main principle of the testbed experimentation is that
we must understand the technology if we want to understand
the future. Currently there are some clear trends that the cutting
edge technology follows like the convergence of heterogeneous
wireless access technologies for seamless handooffs and seam-
less high bandwidth operations, cloud computing, Software
Defined Networking(SDN) and Network Function Virtualiza-
tion (NFV). All aforementioned technologies will provide the
backhaul for the Future Internet ecosystem, where already an
increasing need for converged technological solutions is caused
by the explosion of mobile Internet data traffic.

In order to make a wireless testbed cloud and service
enabled the following questions have to be answered: how to
use the control framework of a wireless testbed like OMF[1]
in parallel with the Openstack cloud OS, how can SDN be
used to build virtual networks and slice network resources,
which extensions are necessary in both the dataplanes and
control/management planes of the testbed, how can Big Data
technology be supported and which extensions are required
to make software services testing part of the experimentation
cycle.

In this paper we describe how this step towards cloud
and service enablement is performed in both the data and
the control/management planes of the Network Implementation
Testbed using Open Source platforms (NITOS testbed)[2]. We
describe the methodologies used, the extensions developed
and provide preliminary results of our approach. A special
reference is made for Big Data and the MapReduce[3] capa-
bilities of NITOS tetsbed through the execution of a Hadoop
MapReduce application scenario.

Besides presenting the new services NITOS testbed is
capable to publicly ooffer to the FIRE testbed community,
this paper can be used to provide the necessary guidelines
to other wireless testbeds for ways of entering the cloud com-
puting and software defined networking world. A successful
marriage of wireless and cloud technologies paves the way
for experimentation that is able to span all the protocol stack,
bring network’s sophistication to the edge, support diverge
needs and validate/verify business models that could only be
evaluated when they enter the deployment phase. For example,
utilization of cloud infrastructure and cloud technologies at
the edge network, supports for testbed experimentation in
use cases like CloudNets [4], VM migrations between multi-
domain (wireless, optical) environments, IoT with Big Data
support, Mobile Cloud Computing and so on.

A. Motivation behind the cloud extensions

In NITOS we are interested in all aspects and services
(e.g IaaS, PaaS, NaaS etc) a cloud facility can provide to an
experimenter, but due to page size limitations we present the
ones we consider as the most important and that are already
in (or are close to) the production phase in our testbed. In
more detail, we present our extensions made for using IaaS and
Openstack technologies, Big Data and (Hadoop’s) MapReduce,
SDN networking and also our extension on the SOA world
using Enterprise Service Bus (ESB) technologies.

IaaS and NaaS: Hardware, Infrastructure and Network as
a Service are key enablers in order to maximize the usage effi-
ciency of physical resources while giving the experimenter the
potential to rapidly build his own private network, customize
his servers, drivers and adapters or evaluate his algorithms,
policies, applications and technologies. In subsections II-B
and II-C we show how we approached the adoption of cloud
technologies while not compromising the freedom of the
experimenter’s control on the testbed resources.

Big Data: An efficient data storage mechanism is required
to meet the scalability constraints that arise in large-scale
experimentation. Traditional data storage approaches are not
responsive to manage huge data amount arriving from thou-
sands sources of information mostly in an unpredictable and
bursty way. Future Internet urges for new data infrastructures
that can seamlessly and efficiently meet the requirements of
demanding applications [5]. Such solutions can be sought in
the realm of cloud storage technologies. For example, in IoT
use cases, the generated data sets are gaining tremendous size
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Fig. 1: NITOS testbed: a cloud based,service oriented wirelss testbed facility

and complexity and are too large to be analyzed, managed
or processed using common data processing tools; these data
sets are the so called Big Data. Nowadays, Cloud Computing
has become a mainstream solution for Big Data processing
and therefore we present in section III how we adopted
the MapReduce processing paradigm to meet the Big Data
challenges.

SOA: The following extension may be surprising; why
extend a wireless testbed with a pure SOA mechanism? Why
an ESB? ESB servers allow the configuration of tasks like
message routing, mediation or transformation and load balanc-
ing. Usually they support the most commonly used Enterprise
Integration Patterns(EIPs) and enable transport switching, rule-
based and priority-based mediation for advanced integration
requirements. Additionally, typical functions at the ESB tier
may include XML/XSLT transformations, logging, and XML
firewall and security/authentication services. What usually is
underestimated when talking about testbed infrastructures is
that at the end of the day the whole infrastructure (physical
or virtualized) and all software components must cooperate
harmoniously in order to provide services; the need for services
drives the technology (although in some cases the opposite is
possible). In section II-D we present how we extended NITOS
testbed with an ESB mechanism.

The experimenter must have the total control of all protocol
stack layers and all infrastructure architecture tiers, while
beeing able to experiment using orchestrations of hardware
and software components that use state-of-the-art technologies.
Since today’s testbed technology is almost exclusively suitable
for wireless experimentation and was not designed initially for
cloud experimentation there is hardly none adequate software
mechanism to support mining and analysis of enormous large
data sets in demanding applications like in IoT. By extending
the capabilities of NITOS testbed in the wireless field with a
cloud infrastructure, the set of use cases that can be supported
is extended significantly.

II. EXTENSIONS DESCRIPTION

A. The NITOS testbed

The NITOS hardware experimental facility comprises of
the following testbeds: the Wi-Fi outdoor and indoor testbed,
an OpenFlow testbed, a Software Defined Radio testbed, the

Wireless Sensor Network testbed (Fixed positions (building-
scale), Mobile utilizing bikes (city-scale), Rural areas (agri-
cultural deployment)), a WiMAX testbed, a LTE testbed and
a 3G testbed with femtocells. In the heart of NITOS testbed
resides a powerful Control and Management plane, a software
that must be extended further to support the cloud concept.
The basic control and management frameworks/tools used in
NITOS testbed are the OMF framework[1], the OMF/OML
measurement framework, the NITOS scheduler and the NITOS
Broker[6]; the first was originally created in the Orbit testbed
and soon became the dominant state-of-the-art framework
in experimentation control. The NITOS scheduler enables
resource slicing of NITOS testbed and is responsible for
resource reservation, thus allowing parallel experimentation
of multiple users. NITOS Broker on the other hand, is an
extension of the OMF framework that integrates NITOS’s
Scheduler functionalities and at the same time it provides an
XML-RPC interface to support federation with other testbeds
through the Slice Federation Architecture (SFA). We note that
OMF v6 will incorporate the functionality of various tools like
the NITOS scheduler.

B. IaaS, MaaS services and cloud management

NITOS cloud infrastructure supports a hybrid IaaS-MaaS
service model; the IaaS model provides access to computing
resources in a virtualized environment and suggests offering
of virtual server space, network connections, bandwidth, IP
addresses and load balancers. NITOS embraced the solution
of Openstack software, enabled all the above and hence it
gives the user/ experimenter the ability to access a number
of virtualized components across its platform and utilize them
for the experimentation purposes.

In NITOS’s case, the IaaS model complements the MaaS.
MaaS, standing for Metal as a Service, is a cutting edge
trend that allows users to provision their servers and nodes
dynamically, which are in this case the whole physical ma-
chines and not just cloud instances. Thus, the existence of
NITOS testbed along with the OMF v6 framework allows
an on-demand design and implementation of small to larger
scaled cloud infrastructures on top of which cloud services
are supported.

NITOS uses the Openstack Gizzly version over Ubuntu
13.04 Operating System (UbOS) through the KVM hypervisor
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Fig. 2: NITOS testbed: Cloud Management Architecture

to provision the different resources each Testbed Node (TeN)
exposes. The set up used is customized according to the
needs and demands dictated by the XIFI project and com-
munity, a project of the European Public-Private-Partnership
on FI-PPP[7] programme that aims to create sustainable pan-
European federation FI test infrastructures; a set of activities,
requirements and developments are demanded to integrate the
NITOS infrastructure with the XIFI Fi-PPP system.

In order to accomplish the described architecture we cre-
ated two baseline TeN images; one for the Openstack TeN and
one for the KVM hypervisor hosting TeNs. Both use the same
UbOS and provide a twofold advantage to the experimenter:
The first is the ability of UbOS to cooperate with OMF v6 and
the second is the ability to modify the wireless drivers hosted
by the selected TeNs according to the experimenter’s scenario
and needs. Thus, the TeNs combined with the provided cloud
functionalities maintain their full experimental purpose and
hence the diversity of the configurations of all given resources.

The OMF v6 framework allows to load the Openstack and
KVM hypervisor baseline image to any allocated TeNs and
create a smaller or bigger cloud according to our needs. In
advance, the Openstack Resource Controller (ORC)[8] offers
the ability to create and manage virtual machines over the
Openstack platform and handle any available resources. It also
utilizes the Openstack API using Ruby (Fog gem), an open
source project, and provides a common API for a number of
cloud services including Openstack.

Regarding the network configuration among the KVM
TeNs, the Openstack TeN uses a DNS server on NITOS’s
server side. It provides static IPs, according to the MAC ad-
dress of each TeN, over a separated and isolated experimental
network, establishing this way a stable network environment.
For the experimentation network connections an Openflow
network is used.

C. NITOS and Software Defined Networking

Following the SDN paradigm, the control plane establishes
the local data set used to create the forwarding table for state
exchange and topology changes updates and the data plane

uses the forwarding table entries to forward traffc between
ingress and egress ports. Southbound interfaces (APIs) are
used for the communication between the controller in the
control plane, and the switches and routers of the network
(data plane). They also facilitate control over the network
in order to dynamically make changes according to real-time
demands. Northbound APIs can enable network functions like
path computation, loop avoidance, routing and securite and en-
able orchestration systems like OpenStack Neutron to manage
network services in a cloud. Nitos’s work related to SDN is
supported by many EU funded projects like CONTENT [9],
FIBRE, etc. and concerns exploitation of research on both the
southbound and northbound APIs.

The current landscape of SDN controllers includes
openflow-based (like Floodlight, NOX/POX, Trema etc) and
non-openflow-based solutions (like Junipers Contrail that is
XMPP based). Our approach is to extensively use pro-
grammable dataplane technologies (like OpenVSwitch (OVS)
and the Click modular router) and switches with native
openflow support in both the wired backhaul network and
the Linux based NITOS wirelss access systems. The usage
of programmable dataplanes and Linux systems allows an
extremely flexibile usage and adoption of many types of
SDN controllers and southbound interfaces. We have and are
still evaluating, many types of controllers (NOX/POX, Trema,
FloodLight,Opendaylight etc) over the FlowVisor in various
application scenarios in the access of the 802.11 network. In
the backhaul of the wired NITOS network the FlowVisor is
used to expose to experimenters and service builders the way to
”attach” their OpenFlow controllers to the OpenFlow switches
and have their own view and control of their experimental
network.

In the SDN direction we made additional extentions to sup-
port compatibility with OpenNaaS[10] regarding the resource
abstraction and resource reservation of the virtualized network
resources. To this end, similarly with the available XML-RPC
OpenSFA interface a REST interface is also available to expose
the inventory of the testbed network resources to OpenNaaS.
Another direction we are investigating is towards integration
capabilities of NITOS’s SDN networking with the Neuthron/
OpenStack services.

D. SOA and Professional ESBs

The software ESB solution we adopted is the open source
WSO2 ESB[11], used by very large players like eBay, to
perform billions of transactions per day. Currently one instance
is functional and we plan to extend the installation in a cluster
deployment. As an initial step, the experimenters have to
request an account and a slice through the NITOS scheduler in
order to use their own domain. This way, the experimenter will
be able to use a professional ESB as an intermediate between
his services, deployed in the server tier of his experimental
setup, and the access tier, used to support real traffic offer
(eg. by mobile users) using various wireless technologies in
real conditions. Thereby, we bring the experimentation phase,
the service designer and the service consumer closer to the
supporting technologies.

One of our recent developments is that the OMF/OML
measurements are available to the experimenter through cus-
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Fig. 3: NITOS testbed: a service oriented wirelss testbed
facility (src: WSO2 ESB site)

tom statistic consumers we build (that implement the Media-
tionStatisticsObserver interface of the WS02 ESB). Thus, the
experimenter can have a global view in a uniform OML way
of both the network/ infrastructure statistics of his experiment
and the ESB services performance statistics. We note that
towards being service oriented other products of the open
source WSO2 family, like the Complex Event Processor (CEP)
and the Business Activity Monitor (BAM), will be part of a
large Service and Business Framework we envision to operate
in the NITOS testbed.

III. NITOS CLOUD SERVICES: BIG DATA

To process and analyze Big Data, datacenters that operate
clusters of machines are programmed by high-performance
MapReduce-based middleware. The MapReduce programming
model[3] is used to perform computations of very large data
sets with a distributed and parallel algorithm over a cluster
of commodity machines following the operating prototype of
functional programming (eg. Lisp). The cluster comprises of
a master node and several slave nodes, and the MapReduce
program consists of a filtering and sorting procedure, namely
Map(), and a summary operation called Reduce().

To support the MapReduce concept we adopted the Hadoop
software library, a middleware that allows a cluster to scale
up from a single server to thousands of machines that offer
both storage and local computation. Among others, the reason
behind Hadoop’s selection is that it is perfectly suited for
distributed computations, it is natively designed to detect and
handle system failures at the application layer and it delivers
high-availability without relying on the hardware level.

In order to build a Hadoop cluster we designed an OMF
image that comes coupled with a script and is stored in the
image pool of NITOS server. The image includes Hadoop at
its simplest level (basic plugins/installations for Java, JVM
and Hadoop) and the script makes the following system
adjustments:

1. In order to distribute computations over the cluster, the
master should be able to ssh password-less to the slaves to
start the Daemons. Our extension provides an automated RSA
key exchange between all workers and the master.

2. The replication factor is set initially to 3, if the cloud
includes more than two nodes; should the cluster consist of
less than three nodes, the replication factor is set to 2. The
replication factor is the number of copies of a file that the
Hadoop Distributed File System (HDFS) should maintain.

3. Since Hadoop follows strict rules about choosing the
right DNS entries, we are required to setup a ”local Hadoop-

Fig. 4: NITOS testbed: a cloud based, service oriented wirelss
testbed facility

DNS”. Our API creates such a Hadoop-DNS and also sets alias
names of the nodes.

4. The communication between all nodes is carried out
solely over the internal ip of our internet connection because
it offers speedup when nodes exchange their data during the
experimentation. This is defined in the core settings of Hadoop
by the API .

5. It may appear trivial, but we have to define which nodes
will play the role of the slaves and which will work as the
master node in our cluster so that it works properly. This, we
also implemented to be executed automatically as part of the
script.

A. Experiment Demonstration in NITOS testbed

Here we present a sample MapReduce experiment on
NITOS testbed that is about retrieving the k-shells of a
given Complex Network[12] starting with the cluster setup
description. More speciffcally, the input file is a description of
a network graph and the output file contains the corresponding
k-shells. Here, our NITOS Hadoop-based cloud consists of six
wireless nodes, one master and five slave nodes.

We loaded the designed OMF image on NITOS’s nodes
20 to 25, where every single node is now a standalone slave.
The script appointed node 20 automatically as the master and
the rest of the nodes as slaves, established the keyless ssh and
chose the internal ip for the communication. Afterwards, the
master set up the local Hadoop-DNS defining the ip addresses,
the hostnames and the alias names of all nodes; the same
hostnames were adopted in the master and slave configuration
files. The script set also the replication factor to 3. Finally,
the master handed out all edited files to every slave to achieve
data coherence. We also ran a separate script that starts the
Hadoop Daemons (i.e. the HDFS, the Map/Reduce Daemons,
the datanodes, the jobtracker and the tasktrackers). At this
point we have a full functional Hadoop-based Cloud (Fig. 4).

We transferred the input file into the HDFS of our cluster
and ran the program. First, the master split the data into
independent chunks, distributed them and assigned Map tasks
to some/all slave nodes. During a Map execution, each Mapper
read pair-wise (i.e. Key and Value) the received chunk and
transformed it according to specific operations; here Mappers
found out all nodes of the graph with degree less or equal than
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(a) CPU time spent (b) Heap memory footprint (c) Physical vs Virtual memory snapshot

Fig. 5: Results from the sample Hadoop experiment

k. The Shuffle and Sort that followed are default steps that
guarantee that the input for the Reducer is sorted by Key. The
Reducers were now assigned Reduce tasks; they pruned the
input graph, deleted the nodes selected in previous Map tasks
and retrieved the k-cores. After a few rounds of MapReduce
jobs the final output was stored back in the HDFS.

B. Results

The experiment we performed to test the functionality
of our NITOS Hadoop-based cloud is not very large, but it
is suitable to grasp the concept. As the actual nodes (and
not some VMs) were used as Hadoop units it is imperative
to notice that the results show the actual machine resource
consumption and how NITOS’s cloud behaves in an illustrative
experiment. We used the following quantities to visualize the
obtained results:

CPU time spent (sec) stands for time spend solely by
the CPU to perform the computations. Fig.5(a) shows that
for our experiment it is obvious that the Reduce tasks cost
in computation time more than the Map tasks. The results
showed that only one NITOS node in each job performed the
aggregation functions of the Reduce task and more than one
the Map task.

Total committed heap usage (MB) is the memory footprint
of the experiment. Fig.5(b) depicts the heap size measured for
both Map and Reduce tasks. The workload of the experiment
seems to have greater impact on Ten’s memory in Map than
in Reduce phase. The diagram shows that while CPU time
decreases over time the heap demand is almost stable during
the whole experiment.

Physical and Virtual memory (MB) that are shown in
Fig.5(c) provide information about the variations of memory
usage during each particular job. The physical memory that a
task uses, as well as the corresponding virtual memory is also
shown. The distributions of the obtained results show that the
virtual memory that is required for the experiment is actually
an order of magnitude larger than the physical measured.

IV. RELATED WORK

Under the umbrella of FIRE’s initiative and the federa-
tion cover of Fed4Fire, the testbeds used for state-of-the-art
research in wireless testbed experimentation are: wilab.t[13]
provided by iMinds, Netmode[14] provided by NTUA and
Norbit[15] provided by Nicta. All tools and developments that

are developed in the NITOS testbed will be ad-hoc available
in the FED4FIRE[16] federation. There is also ongoing work
for integration of NITOS’s cloud infrastructure with the XiFi
Cloud project and Fi-PPP[7].

In our effort to provide a wileless cloud and service based
experimentation infrastructure, we are closely exploring the
results of the BonFIRE[17] project and testbeds like Orbit
of the GENI[18] initiaitive. For example, in GENI there is
signifficant work done on how to perform seamless handoffs
between various wireless interfaces and (e.g WiMAX, WIFi,
Ethernet etc) using programmable dataplane technology and
SDN mechanisms. This is very important in our effort to pro-
vide a cloud-based wireless testbeds that target heterogeneous
wireless Network (HetNet) environments.

V. CONCLUSIONS AND FUTURE WORK

In the following years there will be extreme need for
testbed experimentation in cloud-based wireless networks. The
reason is that the technologies that support the edge network
will play a central role in the way mobile services are
designed, built and implemented. By making a pure wireless
testbed (LTE, WiMAx, WiFi, WSN) cloud and service enabled
(IaaS, NaaS, OpenStack OS, SDN and SOA extensions), we
give the ability to researchers, infrastructure providers ,and
service and application providers to cooperate over a common
place. We are closely following the advancements in cloud
computing technology, in SDN framework and in Network
Functions Virtualizaton (NFV) that are related to the testbed’s
experimentation goals and can potentially be exploited by the
proposed NITOS testbed system.
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