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a b s t r a c t

Nowadays, mashup services and especially metasearch engines play an increasingly important role on the
Web. Most of users use them directly or indirectly to access and aggregate information from more than
one data sources. Similarly to the rest of the search systems, the effectiveness of a metasearch engine is
mainly determined by the quality of the results it returns in response to user queries. Since these services
do not maintain their own document index, they exploit multiple search engines using a rank aggregation
method in order to classify the collected results. However, the rank aggregation methods which have
been proposed until now, utilize a very limited set of parameters regarding these results, such as the
total number of the exploited resources and the rankings they receive from each individual resource.
In this paper we present QuadRank, a new rank aggregation method, which takes into consideration
additional information regarding the query terms, the collected results and the data correlated to each
of these results (title, textual snippet, URL, individual ranking and others). We have implemented and
nformation search
nformation retrieval

eb

tested QuadRank in a real-world metasearch engine, QuadSearch, a system developed as a testbed for
algorithms related to the wide problem of metasearching. The name QuadSearch is related to the current
number of the exploited engines (four). We have exhaustively tested QuadRank for both effectiveness
and efficiency in the real-world search environment of QuadSearch and also, using a task from the recent
TREC-2009 conference. The results we present in our experiments reveal that in most cases QuadRank
outperformed all component engines, another metasearch engine (Dogpile) and two successful rank

rda C
aggregation methods, Bo

. Introduction

The lack of any specific structure and the vast amount of infor-
ation published on the Web, makes it extremely difficult for the

ser to find the information s/he desires without any external help.
s of February 2010, there are at least 19 general-purpose search
ngines1, as well as numerous special-purpose search engines.
heir population is mainly justified by two reasons: (a) no rank-
ng algorithm is broadly acceptable, although many users tend to
onsider Google’s ranking method as the most successful; (b) no
ngine can achieve large coverage and high scalability. It is a com-
on belief (Sugiura and Etzioni, 2000; Manning et al., 2008) that a

ingle general purpose search engine for all Web data is unrealistic,
ince its processing power cannot scale up to the rapidly increasing

nd unlimited amount of Web data.

The tool which rapidly gains acceptance among the users is
etasearch engines (Meng et al., 2002). These systems operate

ike a filter of the various crawler-based or directory-based search

∗ Corresponding author.
E-mail address: dkatsar@inf.uth.gr (D. Katsaros).

1 See http://www.searchenginewatch.com.

164-1212/$ – see front matter © 2010 Elsevier Inc. All rights reserved.
oi:10.1016/j.jss.2010.09.001
ount and the Outranking Approach.
© 2010 Elsevier Inc. All rights reserved.

engines which they combine. Metasearch engines run simulta-
neously a user query across multiple component search engines,
retrieve the generated results and then aggregate them. Finally,
they present the best among them to the user.

The advantages of metasearch engines against search engines
are significant (Meng et al., 2002):

• They increase the search coverage of the Web, providing a higher
recall. The overlap among the major search engines is usually very
small (Spink et al., 2006) and it can be as small as 3% of the total
results retrieved. On the other hand, the unique results can be
as high as 85% of the total results retrieved by all component
engines.

• They solve the scalability problem of searching the Web and they
facilitate the exploitation of multiple search engines enabling
consistency checking (Aslam and Montague, 2001a).

• They improve the retrieval effectiveness providing higher preci-
sion, due to the “chorus effect” (Vogt, 1999).
Consequently, metasearch engines and their Web 2.0 succes-
sors, mash-up services are important tools and they are becoming
increasingly popular. The core of any such system is the ranking
function it employs, because this function defines the final ranked

dx.doi.org/10.1016/j.jss.2010.09.001
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:dkatsar@inf.uth.gr
http://www.searchenginewatch.com/
dx.doi.org/10.1016/j.jss.2010.09.001
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1999), which assign a score to each entity of the individual rank-
ing lists and then use these scores to perform the ranking, and
L. Akritidis et al. / The Journal of Sy

esult list from the results provided by the component search
ngines. Hence, finding effective ranking algorithms is a problem of
ritical significance for metasearch engines and mash-up services.

The problem of rank aggregation is quite old and has been stud-
ed for a century, starting from a need to design fair elections. It can
e thought of as the unsupervised analog to regression, with the
oal of discovering a combined ranking which minimizes the dis-
ance to each individual ranking. Despite its seeming simplicity it
s surprisingly complicated; finding the optimal combined ranking
s NP-hard (Dwork et al., 2001) under certain conditions. Thus, sev-
ral recent efforts describe approximation algorithms for the rank
ggregation problem (Ailon et al., 2005; Ailon, 2007; Coppersmith
t al., 2006), after showing its relation to the feedback arc set problem
n tournaments (Ailon et al., 2005). Some of these are extensively
pplied to many different research domains, such as bioinformatics
DeConde et al., 2006), Web spam detection (Dwork et al., 2001),
attern ordering (Tan and Jin, 2004), metasearching (Liu et al., 2007;
enda and Straccia, 2003; Sculley, 2007; Shokouhi, 2007; Oztekin
t al., 2002) and many more.

Web metasearching in contrast to rank aggregation, is a problem
osing its own unique challenges. The results that a metasearch sys-
em collects from its component engines, are not similar to votes
r any other single dimensional entities: Apart from the individ-
al ranking it is assigned by a component engine, a Web result
lso includes a title, a small fragment of text which indicates its
elevance to the submitted query (textual snippet) and a uniform
esource locator (URL). Apparently, the traditional rank aggregation
ethods are insufficient for providing a robust ranking mechanism

uitable for metasearch engines, because they ignore the semantics
ccompanying each Web result.

Based on these remarks, we conclude that ranking in Web
etasearching is a more complex problem than rank aggregation.

ndividual rankings might be noisy, incomplete or even disjoint,
ence they should not be the only parameter affecting ranking.
urther processing is required in order to filter the results and
llow the final result list of the metasearch engine to be free of
nwanted, devious and unfairly highly ranked Web pages. Since
ommercial interests might frequently and unpredictably affect the
esults of searching, the user is not clearly protected against the
nterests of individual search engines. Therefore, the ranking algo-
ithm employed by a real metasearch engine, should be able to
rovide results that are as free as they can be from paid listings and

inks.
In this paper we propose QuadRank, a new rank aggregation

ethod suitable for metasearch engines. QuadRank is a positional
anking method designed to deal with top-k lists returned by web
earch engines. Its main features are:

It assigns scores to the candidate results by considering multiple
parameters such as the number of the search engines where a
particular item appeared, the total number of exploited search
engines, the size of the top-k list returned by each search engine,
the number of the occurrences of the query terms in each docu-
ment, term proximity, zone scoring and others.
It refrains from using any training data in order to perform the
rank aggregation, because, there is usually no evidence about the
underlying data properties and their distributions.
It does not count upon the scores of the individual search engine

rankings in order to perform the rank aggregation, because, most
of the search engines do not provide such scores.

The new algorithm is evaluated on real world data drawn from
our major search engines against individual search engines listings
and Software 84 (2011) 130–143 131

as well as results returned by metasearch engine Dogpile2, using
QuadSearch3, a metasearch engine developed, among others, as a
testbed for rank fusion. There is also an independent performance
study of metasearch engines (Allen, 2009), comparing QuadSearch,
Dogpile and Mamma, which showed that QuadSearch was the best
of the three for that (limited) query load.

We also compare our proposed method to two other existing
rank aggregation methods. The first is the well-established Borda
Count method which assigns scores to the collected documents, by
accumulating the individual rankings they received by the compo-
nent engines. The second method is the Outranking Approach, an
order-based method presented in Farah and Vanderpooten (2007),
which orders the items by specifying a set of thresholds and by
comparing each document with all the other collected documents.
You can see Section 2 for a brief description of these two methods
and a discussion on their differences from our proposed algorithm.

Initially, we test these methods by utilizing the results from the
Web Adhoc task of the Web Track of the TREC-2009 Conference
(Soboroff et al., 2009). In the sequel, we report the performance
of the examined methods in the real-world environment of Quad-
Search.

The rest of this article is organized as follows: in Section 2 we
provide some necessary background material and survey the rel-
evant rank aggregation methods. In Section 3, which presents the
main article ideas, we describe the new rank aggregation method
and the implementation issues behind the developed metasearch
engine. In Section 4 we present an evaluation of the proposed
method, and finally, Section 5 concludes the work.

2. Preliminaries and relevant rank aggregation methods

We start with a universe U of items (documents in the context of
metasearching); each item has a unique identifier c. A ranked list r of
items c1, c2, . . ., cn drawn from the universe U, is an ordered subset
S ⊆ U, such that r = [c1 ≥ c2 ≥ · · · ≥ cn], where ≥ is an ordering relation
on S. Each item c ∈ S, has the attribute r(c) which represents the
ranking of c in list r. Rankings are always positive, the best ranking
an item could get is 1, and higher ranks show lower preference
(reduced relevance to a query, in the context of metasearching).

If r contains all the items of U, then it is said to be a full or com-
plete list; if |r| < |U|, then it is said to be a partial list, and if |r| = k,
where k is a fixed constant, it is said to be a top-k list. Apparently,
a top-k list is a special case of a partial list. The ideal scenario for
rank aggregation is when each search engine gives a complete list
of all the items of the universe related to the keyword terms of
a given query. Unfortunately this is not possible since either each
component engine has a partial coverage of the Web, or for reasons
of speed or protection of the proprietary ranking algorithms, the
engine returns only a top-k list. The worst but unusual scenario is
when the result lists of component search engines have no over-
lapping elements. In this case there is nothing that a standard rank
aggregation algorithm can do. However, as we will see later, Quad-
Rank takes into account the metadata accompanying each item, in
addition to the individual rankings of the search engines and this
is an advantage of our method over the other methods.

Two families of rank aggregation techniques exist (Renda and
Straccia, 2003): (a) the score-based policies (Vogt and Cottrell,
(b) the order-based (or rank-based) policies (Dwork et al., 2001;
Sculley, 2007; Beg and Ahmad, 2003), which work upon the order

2 http://www.dogpile.com.
3 A publicly accessible prototype of QuadSearch is available under

http://quadsearch.csd.auth.gr.

http://www.dogpile.com/
http://quadsearch.csd.auth.gr/
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rank) information that each entity received in the individual rank-
ng lists. Although there have been proposed a lot of algorithms for
ank aggregation, when it comes to applying these techniques to
eal-world metasearch engines the problem becomes even more
omplicated.

The methods belonging to the first category, were utilized by
he first metasearch engines and they assign a weight to each
tem of a ranked list, which usually originates from the respec-
ive component search engine. The aggregation is performed using
hese scores; examples of this practice include the works in Vogt
nd Cottrell (1999) and Aslam and Montague (2001b). Although
lmost no search engine provides the ranking scores, it is possible
o convert local ranks into ranking scores. Although score-based

ethods appear to be more effective for rank fusion (Renda and
traccia, 2003), the absence of scores (or denial to reveal) from
any search engines’ rankings turns these methods problem-

tic.
This shortcoming of the score-based algorithms lead to the

eneration of the second family of aggregation methods, i.e.,
he rank-based methods, the mainstream for modern metasearch
ngines. The methods of this family exploit only the rela-
ive position of the items in each ranked list to perform the
usion, thus they are also called positional methods. A primary
dvantage of positional methods is their efficiency in calcu-
ation, since they can be implemented in time linear w.r.t.
he number and size of ranked lists. Unfortunately though,
his efficiency in calculation is not accompanied by guaran-
ees to satisfy the Condorcet criterion (Young and Levenglick,
978).

A popular positional aggregation method is the Borda Count
ethod (Dwork et al., 2001; Renda and Straccia, 2003), which

ssigns scores based on the positions of the item in the ranked
ists. Using terminology from the voting literature, we can see each
tem of a ranked list as a candidate and each search engine as a
oter. Each candidate receives points from each voter according to
ts rank in the voter’s list. For example, the top ranked candidate

ill receive n points, where n is the number of candidates in the
espective ranked list. The total Borda score of the candidate will
e the sum of its scores due to each ranked list where it appears.
n case that the candidate is not in the top-k list of some voter,
hen it will receive a portion of the remaining points of the voter
each voter has a fixed number of points available for distribution)
r a constant number (0 or 1), depending on the variation of the
ethod (Saari, 2000). The Borda Count method can be found in dif-

erent versions, like the weighted Borda Count method (Souldatos
t al., 2005), where each voter also takes a score and therefore his
pinion for a candidate is not treated equally against other voters.

A relatively recent method is the Outranking Approach intro-
uced by Farah and Vanderpooten (2007), which is based on
ecision rules identifying positive and negative reasons for judg-

ng whether a document should get a better rank than another. The
ethod operates by performing pairwise comparisons of each item

o all other items in the set S. If c1 and c2 are two documents of the
et and r(c1), r(c2) are their rankings in the list r, then the item c1
hould be ranked higher than c2 (symbolized as c1�c2) if the two
ollowing conditions are satisfied:

The concordance condition which ensures that the majority of
the input rankings are concordant with the ordering c1�c2. For-
mally, the concordance coalition is Csp (c1�c2) = {r(c1) ≤ r(c2) −
sp}, where sp is a preference threshold which determines the

boundaries between an indifference and a preference situation
between documents.
The discordance condition which ensures that none of the dis-
cordant input rankings strongly refutes the ordering the ordering
c1�c2. Formally, the discordance coalition is Dsu (c1�c2) = {r(c1) ≥
and Software 84 (2011) 130–143

r(c2) + su}, where su is a veto threshold which determines the
boundaries between a weak and a strong opposition to c1�c2.

Based on these conditions, a generic outranking relation is
defined by the following formula

O(c1�c2) ⇔ |Csp (c1�c2)| ≥ cminAND|Dsu (c1�c2)| ≤ dmax (1)

where cmin and dmax are the concordance and discordance thresh-
olds respectively.

Other positional aggregation methods include the Markov chain
based on Dwork et al. (2001), soft computing techniques (Beg and
Ahmad, 2003), and median rank aggregation (Fagin et al., 2003).
The first methods “blend” the ranked lists into a Markov chain (MC),
where each distinct item of the lists corresponds to a state of the
MC and the transition probabilities correspond in some way to the
(partial) ranked lists. The goal of this modeling is to find the station-
ary distribution vector of this MC, which provides a total ordering
upon the states of the MC, and thus an ordering upon the items
of the ranked lists. Unfortunately creating such a MC takes time
�(n2k + n3), where n is the number of distinct items and k the size of
the (top-k) lists; this computational cost can be reduced to O(n2k) to
obtain a very rough approximation. Soft computing methods make
use of genetic or fuzzy logic algorithms to perform the rank fusion,
whereas median rank aggregation uses the media rank for each
item to perform the final ranking.

Improved positional methods for rank aggregation of partial
lists by exploiting the similarity among the items are described
in Sculley (2007), whereas positional methods which are firstly
trained and then used for rank aggregation (i.e., supervised rank
aggregation) are described in Liu et al. (2007). Nevertheless, when
the rank fusion method is going to be implemented as the heart
of a metasearch engine, then fast computation of the aggregated
rank and effective fusion are the major challenges to be met. There-
fore, Markov chain based methods although claimed to be superior
among the positional ones, are not the preferred choice over meth-
ods with linear time complexity computation cost.

2.1. QuadRank vs. Borda count

In this point, we must stress some differences between Borda
Count and the scores of QuadRank.

• QuadRank is a rank aggregation method designed to operate on
metasearch engines. Therefore, its scoring formula takes much
more parameters into consideration such as the zone weighting,
the domain characteristics and the number of the occurrences of
each query term within each result.

• Some Borda Count variations assign scores to each and every can-
didate; a candidate which is not included in the top-k list of a
particular search engine takes a part of the remaining points.
This does not hold for the QuadRank method: a candidate will
be assigned a score only when it is contained in the top-k list of
a particular search engine, otherwise its score is zero.

• QuadRank also takes into consideration the total number of
exploited search engines, the number of search engines where
a candidate has been appeared and the number of items of each
top-k list.

• The QuadRank method has better “resolution”, in the sense that
the possibility of two scores being the same is less than that of

the Borda Count.

• Since our proposed method does not assign scores based com-
pletely on the individual rankings, it is more difficult to be
“deceived” by a spam entry, that is a result which received an
unfairly high ranking.
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Table 1
Summary.

Symbol Meaning

m The number of exploited component engines
c A single result (document) in a component list
ri(c) The ranking of c in the ith component list
nc The number of component lists containing c
k The number of items included in each component list
q An arbitrary user query
tq A term of q
Q The number of terms of q
N The number of items included in the final merged list
N The number of items containing t
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Table 2
Example.
tq q

zc(i) The ith zone of c (see Table 3)
Wzc (i) The weight of zc(i)
f(c, tq , zc(i)) The number of occurrences (frequency) of tq in zc(i)

.2. QuadRank vs. Outranking approach

In this subsection we describe the main differences between our
roposed method and the Outranking approach.

The Outranking approach takes into account only the individual
rankings that each document received by the component engines.
On the other hand, QuadRank takes much more parameters into
consideration.
The Outranking approach is an order-based method, therefore
it is only based on comparison among the ranks only. It nei-
ther considers scores, nor hits whereas QuadRank assigns scores
according to the ranking each item received by the component
engines.
The Outranking approach introduces four user-defined parame-
ters (preference, veto, concordance and discordance thresholds).
Selecting different values for these parameters can lead to sig-
nificant modifications in the produced output ranking. In Farah
and Vanderpooten (2007) it is shown that small changes in the
values of these parameters lead to rankings with significant qual-
ity fluctuations. On the other hand, QuadRank involves settings of
weights for each document zone (see Section 3.2 for more details).
Since the Outranking approach requires a pairwise comparison of
each item to every other collected item, it can turn significantly
slow particularly when multiple long input lists are involved
(because there are more items to be compared).

. QuadRank

The default ranking fusion algorithm of QuadSearch is a posi-
ional method able to deal with partial ranked lists; actually
t deals with top-k lists originating from single crawler-based
earch engines. The algorithm treats all component search
ngines equally. The reason we do this is due to the following
lain, but significant observations: (i) all of them are consid-
red by experts as the “major” search engines, (ii) they have
een proved reliable during their lifetimes, and (iii) most users
nd metasearch engines prefer them to perform their searches
n.

Let r1, r2, . . ., rm be m ranked lists corresponding to each compo-
ent search engine. We assume that the each of these lists consists
f a fixed number of k items, consequently, the entire process
nvolves in total km elements that have to be merged and ranked.

erging is a procedure which we employ in order to combine the
different result lists into a single list, by removing all the over-
apping elements. Notice that this list remains unranked until the
coring function is applied to each of the list’s elements.

The overlapping between two component engines varies across
ifferent queries and cannot be predicted, hence we assume that
ur final result list consists of N items. In Table 1 we describe the
Item r1 r2 r3 r4

c1 1 – – –
c2 7 7 10 10

symbols we use in our presentation and the parameters employed
by QuadRank.

In the sequel we present the main ideas implemented by our
proposed method. In particular we describe the methodology
employed by QuadRank in order to deal with individual rankings
and zone weighting and we examine the significance of the results’
URL analysis. Finally, we discuss how all these different compo-
nents can be combined together into a single scoring formula.

3.1. Dealing with individual rankings

The ranking that each element receives by the component
engines is of primary importance for a rank aggregation method
and the majority of the proposed ranking algorithms are mainly
based on these rankings. Consequently, we must design our func-
tion in order to reward a result which achieves high rankings, since
such entries are considered to be more relevant to a given query
than others placed in lower positions.

Therefore, for each item c ∈ S we introduce and evaluate the
quantity

K(c) =
m∑

i=1

(k + 1 − ri(c)) (2)

where ri(c) is the ranking that the item is assigned by the ith com-
ponent engine. In the special case where the item c is not ranked
by list ri, we assume that ri(c) = k + 1. Obviously, the best score an
item can receive is km (if it is ranked first on every component list),
whereas the lower score is 1 and it is assigned on a result which
was ranked last only in one component list.

The introduced score rewards the items which received high
rankings by multiple component engines, however it is relatively
frequent that two or more results are assigned equal K(c) values.
For instance, consider the occasion where two different items c1,
c2 receive the following rankings by four top-10 lists r1, r2, r3 and
r4.

In the example of Table 2 it holds K(c1) = K(c2) = 10. Nevertheless,
we firmly believe that c2 should be ranked higher than c1 since:

• it appears in more input rankings, consequently it outperforms
c1 according to the democratic symmetry (Saari, 2000).

• it appears in more than half of the input rankings and hence,
there is a smaller probability of being a spam entry according to
the Condorcet criterion.

To handle such cases, we must reward the results which are con-
sidered as relevant to a given query by as many component engines
as possible. If nc ≤ m is the number of the component engines in
which a result c occurs, then we introduce the rank-based score
which is determined by the following equation:

R(c) = m log(ncK(c)) (3)

where m is the total number of the exploited engines. Note that the

logarithm in 3 is employed in order to reduce the deviation among
the different values that Ri(c) can receive. Additionally, although
multiplying the logarithm with m makes no difference (since m is
constant for all items), it is justified by our intention to assign the
R(c) score a larger value.
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Table 3
Zones.

Zone ID Weight

Title 1 10
Snippet 2 3
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accumulators which it populates during the component engines’
result list merging. When an item enters the list, we also search for
URL 3 5

.2. Zone weighting

Zone weighting is a well established methodology for rank-
ng documents in traditional search systems. The main idea it is
ased on suggests partitioning each Web document into locations
f special interest, namely zones or fields. Such partitioning is usu-
lly performed in structured or semi-structured documents (i.e.,
ML files), where the available information is distributed across
ultiple zones and represents different semantics (i.e., authorship,

ublication date, title, etc.).
The introduction of zones allows us to compute scores by taking

nto consideration the physical location of a term within a docu-
ent (i.e., in which field of an XML document a term appears). An

xample of such ranking scheme is the BM25F function presented
n Lu et al. (2006).

The main difficulty hidden behind the idea of using zone scor-
ng in a rank aggregation method is that a Web result retrieved
y a component search engine is not a complete document and
nly some limited representative information is provided to a
etasearch engine. This information comprises of three individ-

al semantics: the title, a small fragment of the document’s text,
alled snippet, which indicates the relevance of the document to
he user query and a uniform resource locator (URL).

In this paper we attempt to integrate zone scoring character-
stics to our ranking function. The idea we introduce here is to
reat the three aforementioned semantics as separate document
ones. Although zone weighting is not a new scheme in informa-
ion retrieval, to the best of our knowledge we are the first to apply
ts principles in the field of rank aggregation. Our motives are mul-
iple: A Web result which contains the query terms on its title is
ossibly more relevant than another which does not. This is also
alid for results containing the query terms in their snippets more
imes than others. Hence, the number of the occurrences of the
uery terms in the individual zones is another parameter which
hould be taken into consideration by an efficient ranking method.

As we have mentioned, there already exists a zone scoring
cheme, BM25F. Nevertheless, we found that this method is not
uitable for our case since:

The BM25F function requires the length of each zone (in number
of terms) to be computed, which undoubtedly is a time consum-
ing operation.
The second reason that turns the usage of zone lengths problem-
atic is that the Web results returned by the component engines
are not complete documents. The small fragments of text used
to represent the similarity of each document to the submitted
query, have similar or identical lengths for each entry. Conse-
quently, zone lengths have a small contribution to the score of an
item.
It depends on several (typically three) user-defined parameters.

In this subsection we propose our own policy for zone scor-

ng and we believe that our suggestions are more suitable for

etasearch applications. At first, in Table 3 we determine the
eights assigned to each zone. Based on these weights, we use the
and Software 84 (2011) 130–143

following formula to compute a weight factor:

Z(c) =
Q∑

t=1

log
N

Nt

3∑
z=1

Wzf (c, t, z) (4)

where N represents the total number of items included in the final
merged list and Nt is the number of items containing the query term
t. Furthermore, Wz denotes the constant weight of a zone, which
we show in Table 3, whereas f(c, t, z) represents the frequency of
the query term t within zone z.

The logarithm log N/Nt is drawn from the traditional tf/idf scor-
ing functions used by search engines to rank Web documents (i.e.,
BM25, BM25F). It is used to reward the documents containing the
query terms appearing a few times only, because such terms are
expected to reveal the information need hidden behind each query.

Note that the Z(c) score rewards the documents which include
the query terms on their title, snippet or URL as many times as
possible since it is sensitive to the corresponding frequency val-
ues. Consequently, the documents which include all or some of
the query terms in their title multiple times are considered more
relevant to the given query and they are assigned higher scores.

To compute the desired frequency values, the text accompany-
ing each result must be appropriately processed. Therefore, each
document is tokenized (that is, we obtain all of its distinct terms)
and each of the extracted distinct terms passes multiple filters
which sequentially perform punctuation removal, case folding and
stemming. These are CPU-intensive procedures and one would
expect query processing to decelerate significantly. However, the
small document population as well as their limited size (titles and
snippets consist of a few terms only) render this delay rather incon-
sequential (see Section 4.3).

3.3. URL analysis

To the best of our knowledge, the current publicly known rank
aggregation methods do not take into consideration the URLs of
the results that the component engines return. In this subsection
we attempt to mine the information revealed by the URLs, in order
to improve the quality of the produced results.

Since a metasearch engine is a system which exploits multi-
ple resources, it is possible that several results under the same
domain name would appear in the final merged list. Although these
entries have different URLs and probably include different con-
tents, their origin is identical. This observation forces us to conclude
that this domain possibly contains adequate information relevant
to the given query. Consequently, we should enhance our ranking
function in order to reward such results.

On the other hand, a result list comprised of different items from
the same resource is hardly informative. An effective search sys-
tem must provide qualitative results from many sources, because
this wide variety partially ensures that the user can locate the
desired information. For this reason, the major crawler-based
search engines include at most two documents with the same
domain name in their result lists, even if there are additional rele-
vant documents.

The problem is now becoming straightforward: from a pool of
X documents having the same domain name we must identify and
reward the best two among them, whereas we should discard the
rest X − 2 of them. The challenge becomes even greater if maximum
efficiency is required and fast system response is a key issue. Quad-
Rank solves the problem by employing an auxiliary table of domain
its domain name into this accumulator table. If the record is not
present we insert it and set the corresponding accumulator value
equal to 1. In the opposite case we increase the accumulator by one.
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Table 4
Performances of the 10 best runs of the WA task of TREC-2009.

Run MAP P@5 P@10 P@20 R-Precision

uvamrftop 10.2% 41.6% 37.4% 28.8% 13.6%
UMHOOsd 10.2% 34.8% 37.2% 35.4% 17.5%
UMHOOsdp 10.2% 34.8% 37.2% 35.4% 17.5%
NeuLMWeb300 10.0% 44.8% 44.2% 38.0% 16.7%
NeuLMWeb600 9.8% 39.6% 39.8% 36.1% 16.9%
uogTrdphCEwP 9.8% 42.4% 37.4% 32.1% 15.4%
UMHOObm25B 9.8% 34.8% 36.4% 34.3% 16.8%
L. Akritidis et al. / The Journal of Sy

During the scoring process we consult the accumulator table and
e assign additional scores according to the following formula:

(c) = log
(

10
2m − 1 + accc

2m

)
(5)

here accc is the domain accumulator of c. Later, when the results
re going to be presented to the user, only the two highest scored
esults with the same domain name are used; the rest of them are
imply discarded. Note that for the results having domain names
ppearing only once, it holds that accc = 1 and the quantity U(c) is
ssigned a value equal to 1.

The analysis of a result’s URL can lead to additional information
egarding the page it represents. More specifically, the two or three
railing characters of the domain name (also known as the domain
xtension), usually reveal the originating country of that page.

Additionally, a significant number of queries submitted to a
earch engine is directly connected to a specific geographic region.
or instance the travel, vacation and news oriented searches are
ases falling into this category. When such information is required,
here is a significant possibility that the pages hosted under affiliate
omain extensions are the most satisfactory.

To address such issues, we introduce an expansion to our rank-
ng function, the Geofactor, a parameter which is determined by
he relationship between the geographic locality of the user and the
roximity of each result c. The Geo Factor receives values according
o the following formula:

(c) =
{

1 if domain extension and user locality are not identical,
�, � > 1 otherwise.

here � is a predefined constant receiving values � > 1; a typical
ption which we have used in our experiments is to set � = 1.2.

By integrating the Geo Factor into the scores of Eq. (5) we intro-
uce the URL Aware scores determined by the following formula:

(c) = G(c) log
(

10
2m − 1 + accc

2m

)
(6)

The lowest value that U(c) can receive is 1, for results appearing
nder a domain name encountered only once in the m compo-
ent lists and when this domain does not match the geographic

ocality of the user. On the other hand, if we assume that each
omponent engine returns at most 2 results having the same
omain name, then the largest value that U(c) can be assigned is
log((20m − 5)/m).

.4. QuadRank scores

In this subsection we merge all the aforementioned components
nto a single scoring function, namely QuadRank. According to our
roposed method, each collected result is assigned a score which

s determined by the following formula:

(c) = U(c)
(

R(c) + 1
Q

Z(c)
)

(7)

here Q is the total number of the query terms. As one may notice
rom Eq. (4), the Z(c) score representing our zone weighting policy,
s strongly depended on the number of query terms and increases
roportionally to Q. Consequently, to regulate the contribution of
one weighting to the final scores, with respect to the other terms
(c) and U(c), we introduce the quantity 1/Q.

. Evaluation of the proposed method
The most important measure of a search system’s performance
s the quality of its search results. Quality is a decision made after
he results evaluation by one or more human users. Moreover, it
hould not be assumed that quality is absolute; one user may well
udge that a result is qualitative, while another says it is not.
WatSdmrm3we 9.5% 16.0% 16.4% 16.6% 14.4%
udelIndDMRM 9.4% 26.0% 31.8% 33.1% 17.0%
udelIndDRSP 9.4% 28.0% 32.8% 31.9% 15.8%

In addition, quality is usually identified with the relevancy of
the returned results to a given query. Every query represents an
information need; the user who submits it, seeks for information
that is somehow related to the terms of the query. Consequently,
a document is judged to be relevant only if it addresses the stated
information need, not because it happens to contain all the words
of the query.

To evaluate the performance of a metasearch engine, a basic
difference from search engines must be considered. A metasearch
engine does not maintain its own document collection. It neither
employs crawlers, nor indexers to construct a repository and an
underlying index structure. Its output is based on the results that its
component engines return. It does not even retrieve the entire set
of these results; it works only with the first parts of this set, as these
parts are the most promising to contain the best answers to a speci-
fied query. Therefore, in the extreme situation where all component
engines send irrelative results, there is nothing a metasearch engine
can do. But as we show later, a metasearch engine having an effec-
tive ranking fusion method, can mine the individual result sets and
fuse them to a list that ranks the best items at the top.

A number of methods have been suggested for evaluating the
effectiveness of a search system and its ranking algorithm. None of
these methods are entirely satisfactory, but this is a natural conse-
quence of attempting to represent multidimensional behavior with
a single representative value.

To ensure a fair evaluation of QuadRank against its competitors
in the context of retrieval effectiveness, we divide our experimen-
tation into two phases: At first, we use data from the TREC-2009
conference which apart from the result sets, it also provides a list
containing a set of queries and the corresponding relevant docu-
ments.

In the sequel, we measure the performance of the involved algo-
rithms in the real-world environment of QuadSearch. For this series
of experiments there is no ground truth regarding the relevancy of
each document to our test queries. For this reason, we asked from
six of our colleagues to judge the relevancy of each document and
in our analysis we consider a document to be relevant if and only if
more than half (four or more) of our colleagues judged its relevance
positively.

4.1. Retrieval effectiveness evaluation with TREC data

The first phase of our experiments includes the application of
our proposed method to the Web Adhoc (WA) Task of TREC-2009
Web Track (Soboroff et al., 2009). This task contains 50 topics (test
queries) and 72 participating teams. For each query, each team pro-
vides a ranking of about 1000 documents which is later evaluated
using a separate file containing all the documents that are relevant

to the given topic. The performances of the 10 best runs of the WA
task are reported in Table 4.

For evaluation, we used the ‘trec eval’ standard program utilized
by the TREC community in order to calculate several measures indi-
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Table 5
Performance of different rank aggregation methods for m = 72 and varying number
of retained documents.

Run MAP P@5 P@10 P@20 R-Precision

Best TREC Run 10.2% 41.6% 37.4% 28.8% 13.6%

Borda Count (30) 18.5% 39.2% 37.8% 33.8% 26.0%
Outranking
Approach (30)

15.5% 42.0% 38.4% 36.8% 22.2%

QuadRank (30) 19.5% 43.2% 39.2% 36.4% 25.4%

Borda Count (100) 19.0% 44.0% 42.8% 41.1% 23.4%
Outranking
Approach (100)

18.4% 50.0% 48.0% 40.5% 25.1%

QuadRank (100) 20.9% 46.4% 43.8% 42.3% 25.0%

Borda Count (200) 18.8% 47.6% 44.2% 42.4% 23.1%
Outranking
Approach (200)

18.8% 51.6% 47.6% 44.9% 24.3%

QuadRank (200) 20.6% 49.8% 45.9% 44.7% 24.0%

Borda Count (500) 18.2% 50.4% 47.8% 42.1% 22.9%
Outranking
Approach (500)

18.7% 50.4% 47.4% 41.3% 23.7%

QuadRank (500) 19.8% 50.4% 48.2% 42.6% 23.4%

Borda Count (1000) 17.3% 49.6% 48.0% 42.7% 22.0%
Outranking 18.2% 50.8% 45.8% 39.4% 22.0%
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that all component lists contained results regarding the final game
of 2009 in their top-10 lists. Some other entries were about tickets
for the uefa cup final, whereas others included no information about
tickets at all. All these results were considered as irrelevant.

4 http://www.google.com.
Approach (1000)
QuadRank (1000) 19.9% 51.2% 49.0% 43.1% 21.4%

ating the retrieval effectiveness of a system. These measures are
ean Average Precision (MAP), R-Precision and Precision@n (P@n)

or n = 5, 10 and 20.
QuadRank is compared against the other two rank aggregation

lgorithms as well as against some high performing official results
rom TREC-2009. For each topic, we retrieve one list from each par-
icipating team, that is 72 rankings. From these rankings we retain
nly the first k documents and in the sequel, the 72 top-k lists
re merged into one large list which is finally ranked by employ-
ng QuadRank, Borda Count and the Outranking approach. In the
ollowing tables we present results for different values of k.

To measure the performance QuadRank, it was necessary
etrieve the full text of each candidate document in order to com-
ute the Z(c) scores. Since all the candidate documents are from the
lueweb09 dataset, we have developed the appropriate software
hich operates on the collection and extracts the desired infor-
ation. Z(c) scores are computed by considering the document’s

itle and URL only, because of the absence of textual snippets. Fur-
hermore, the locality of the user is unknown and the geographical
elationship between the user and a document cannot be deter-
ined. For this reason, we have disabled the Geographic extensions

f the U(c) scores in this experimental phase.
Regarding the setting of the parameters introduced by the Out-

anking approach, we used the same values as those mentioned
y Farah and Vanderpooten (2007). Therefore, we considered that
ach input ranking is a complete order (sp = 0) and that an input
anking strongly refutes an ordering between two documents
hen the difference of both document positions is large enough

su = 75%). We also supposed that the majority of the rankings must
e concordant (cmin = 50%) and that every input ranking can impose

ts veto (dmax = 0).
Table 5 shows the performance of the three examined rank

ggregation methods in the WA task for variable number of retained
ocuments. If we consider Mean Average Precision (MAP) as the
omparison measure between the three methods, it is apparent
hat QuadRank outperforms both Borda Count and the Outranking

pproach for all values of k. It is also remarkable that Borda Count
erforms better than the Outranking Approach for small values of
, whereas the situation is reversed as k increases.
and Software 84 (2011) 130–143

Regarding the average Precision values at cutoff points 5, 10 and
20, the performance of the three methods varies significantly. For
instance, QuadRank achieved the highest P@10 values for k = 500
and k = 1000, but for smaller values of k the Outranking Approach
becomes the winning method. Furthermore, for k = 100 QuadRank
achieves the highest P@20 value whereas for k = 200 the Outranking
Approach fetched the most qualitative top-20 list.

4.2. Retrieval effectiveness evaluation with test queries

To examine the retrieval effectiveness of the new ranking algo-
rithm, we have integrated its implementation within QuadSearch,
our experimental metasearch engine. Various queries were submit-
ted to the system and the results’ lists that the proposed ranking
fusion methods returned are recorded and analyzed in this sub-
section. For all tests demonstrated here we exploited four major
component engines (Google4, Yahoo!5, Live6 and Ask7). The sys-
tem dispatched our submitted queries to each of these component
engines and requested top-30 lists to be returned. Consequently,
for the setup that we examine here it holds that m = 4 and k = 30.

Let us suppose that a user searches for tickets for the forthcom-
ing UEFA Champions League final game and thus, he/she phrases
and submits the query “tickets for uefa champions league final 2010”.
The informational need is overt in this query. As mentioned above,
a document not only has to contain the query terms, but also to
address the stated information need to be considered as relevant.
For the specified example query, a document is relevant only when:

• it is relevant to the “uefa champions league” and
• it provides information about “tickets” and
• is about the final game that will be conducted in “2010”.

All documents containing information about the “uefa cup” or
past “uefa champions league finals” (e.g., 2008, 2009) are considered
as irrelevant, since they do not satisfy the user’s information need.

QuadSearch requested and received 120 results (thirty results
from each component engine). After the merging of the results’ lists,
a set of candidates comprised of 88 unique items is constructed.

The top-20 list that QuadRank produced for this query, is dis-
played in ranked order in Table 6. The first column denotes the
QuadRank ranking, whereas in the second column we choose to dis-
play only the domain name of the returned result, to form a compact
and legible table. The next column shows which of the documents
are relevant to the given query (with respect to the judgement
made by our colleagues) and the symbol Ri is used to indicate the
ith relevant document of the QuadRank’s top-20 list. The next four
columns signify the ranking that the component engines gave to
this document8. The dash symbol represents the absence of this
result from an engine’s top-20 list. In the last two columns we
compute and display the ranking generated by the Borda Count
method and the Outranking approach (column headers BC and OA
respectively), when they are applied on the same result set.

A significant number of results that the search engines returned,
were about past “champions league finals”. Particularly we found
5 http://search.yahoo.com.
6 http://www.live.com.
7 http://www.ask.com.
8 Column headers: G for Google, Y for Yahoo!, L for Live Search and A for Ask.

http://www.google.com/
http://search.yahoo.com/
http://www.live.com/
http://www.ask.com/
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Table 6
Top-20 list and relevant documents for the query “tickets for uefa champions league final 2010” when the QuadRank algorithm is applied.

URL R G Y L A BC OA

1 www.championsleagueticketservice.com R1 1 1 – 6 3 5
2 www.championsleagueticketshop.com R2 15 3 5 11 2 2
3 www.worldticketshop.com – 6 – 14 – 16 15
4 en.wikipedia.org/ R3 8 – 1 – 7 10
5 www.soldoutentertainments.com R4 10 2 7 7 1 1
6 www.1st4footballtickets.com R5 – – 13 – 45 62
7 www.uefa.com – 3 – 9 – 9 14
8 www.1st4footballtickets.com R6 – – 3 – 28 61
9 www.livefootballtickets.com R7 16 – 10 – 18 13

10 www.championsleagueticketservice.com – 2 – – – 10 78
11 www.nwtix.com R8 29 – 22 – 23 21
12 www.roadtrips.com R9 4 4 12 – 4 3
13 www.globalticketshop.com R10 – – 16 – 31 51
14 www.uefa.com – – – 6 4 8 9
15 www.1st4footballtickets.com R11 – – – 3 29 27
16 www.ticketcity.com – 12 11 8 – 5 4
17 soccerlens.com – 14 – 11 – 17 11
18 www.webuytickets.net R12 2
19 www.livefootballtickets.com –
20 www.freetickets.org.uk R13

Table 7
Relevant documents in the top-10 lists for the query “tickets for uefa champions
league final 2010”.

Engine 1 2 3 4 5 6 7 8 9 10 R

QuadRank R R – R R R – R R – 7
Google R R – R – R – – R R 6
Yahoo! R R R R – R – R – – 6
Live Search – R R – R – R – – R 5
Ask – R R – – R R – – – 4
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Dogpile S S S R – – – R R – 3
Borda Count R R R R – R – – – – 5
Outranking Approach R R R – R R – – – R 6

Now let us examine the first ten results returned by each algo-
ithm. Ask performed poorly in this query, since it produced only
our relevant documents in its top-10 list, whereas Google and
ahoo were more accurate as they returned six relevant documents.
n the other hand, the top-10 ranking that QuadRank produced
as the most qualitative, since it included seven relevant results.
ote that QuadRank achieved to construct a result list which is

mproved compared to the rankings of the combined component
ngines. These notations are all summarized in Table 7. The sym-
ol R is used to signify a relevant document, the dash symbol is
sed to mark the irrelevant ones, whereas S is used for sponsored
ntries. The last column shows the total number of relevant docu-
ents returned by each component engine or ranking algorithm in

heir top-10 list.
In the same table we present the top-10 list provided by the

ost widespread metasearch engine, Dogpile. The top three results
re sponsored links found on Google Ads9, an online advertisement
ervice maintained by Google. The fourth result which is organic,
s relevant to the query, but it leads to the same location as the
econd result. It is clear that Dogpile’s policy to include paid list-
ngs within organic results leads to a confusing top-10 list, which
ontains different results leading to the same location. In total, Dog-
ile’s top-10 list for this query contains three paid and only seven
rganic results. From these seven results, only three are relevant to

he query, as the other four concern past “Champions League finals”.

In Fig. 1 we illustrate the effectiveness of the search engines
hich we examine in our experiments. The two diagrams depict

he precision values measured for the first 10 and 20 results

9 https://www.google.com/adsense.
3 – – – 27 81
– 24 26 – 19 20
5 9 – – 15 17

respectively. QuadRank outperformed all of its opponents, since it
produced the most qualitative result list compared to the compo-
nent engines, Dogpile, Borda Count and the Outranking approach.

The QuadRank algorithm outperformed all of its components
including the component engines, Dogpile and the Borda Count and
Outranking methods, since it achieved the highest precision values
for both the top-10 and the top-20 lists. Google, Yahoo and Dog-
pile constructed top-10 lists of equal quality, whereas the latter’s
ranking algorithm performed better than the component engines.
Regarding Borda Count, the top-10 and top-20 lists included five
and eleven relevant results respectively, consequently, our algo-
rithm presented more qualitative results. The Outranking approach
was slightly more effective than Borda Count but it was also out-
performed by QuadRank.

In addition, the reader should note an interesting case. If we
compare the 8th and 10th entries of Table 6, we conclude that the
latter received better ranking from the component engines than the
former. However, since QuadRank is not relied completely on the
individual rankings of the component engines, it positions them
in the opposite manner. That decision was vindicated, since the
8th entry is relevant to the given query, whereas the 10th is not.
There are many such cases in the rankings generated by Quad-
Rank: For example, compare the 6th entry to the 7th and 15th
to 16th where the individual rankings were correctly overlooked.
On the other hand, the competitor rank aggregation meth-
ods could not distinguish the difference and provided incorrect
rankings.

Now let us examine how the involved result lists correlate. To
evaluate the correlation of the produced rankings, we employed the
Spearman’s rho measure. The results illustrated in Table 8, reveal
that all algorithms produce lists that diverge significantly.

In the sequel, we measure the performance of the proposed
algorithm for another situation, where a hypothetical engineer
seeks information about how to construct an inverted index in a
distributed environment. The submitted query is phrased as “dis-
tributed index construction” and dictates out metasearch engine to
request 30 results from each of its component engines. QuadSearch
received 120 results and after the merging process, a set of 100
candidates is generated and ranked.
A document is considered relevant to the given query, only if its
content is relevant to “indexes” and it contains some instructions
regarding “distributed construction” in its body. All the results that
provided information regarding index compression, organization
or single-node construction were marked as irrelevant.

http://www.championsleagueticketservice.com/
http://www.championsleagueticketshop.com/
http://www.worldticketshop.com/
http://en.wikipedia.org/
http://www.soldoutentertainments.com/
http://www.1st4footballtickets.com/
http://www.uefa.com/
http://www.1st4footballtickets.com/
http://www.livefootballtickets.com/
http://www.championsleagueticketservice.com/
http://www.nwtix.com/
http://www.roadtrips.com/
http://www.globalticketshop.com/
http://www.uefa.com/
http://www.1st4footballtickets.com/
http://www.ticketcity.com/
http://soccerlens.com/
http://www.webuytickets.net/
http://www.livefootballtickets.com/
http://www.freetickets.org.uk/
https://www.google.com/adsense
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Fig. 1. Measurements of Precision@10 and Precision@20 for various search engines for the query “tickets for uefa champions league final 2010”.

Table 8
Rankings correlation for the query “tickets for uefa champions league final 2010”.

Engine QuadRank G Y L A BC OA

QuadRank – −0.26 0.16 −0.20 −0.07 0.41 0.31
Google −0.26 – 0.09 0.05 −0.09 0.09 0.25
Yahoo! 0.16 0.09 – −0.46 −0.42 0.03 0.16

−0.46
−0.42

0.03
0.16
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Live −0.20 0.05
Ask −0.07 −0.09
Borda Count 0.41 0.09
Outranking Approach 0.31 0.25

Compared to the previous case (where the set of candidates
ontained 88 items), we conclude that for this query, the engines’
overage is significantly smaller. At first, the ranking that our
lgorithm generates, is studied. Table 9 illustrates the top-20 list
eturned by QuadRank and also displays the individual rankings
hat each result received by the component engines. The last two
olumns record the rankings that the Borda Count method and the
utranking approach produced.

The Google and Ask component engines provided answers of

edium quality for this query; only five results out of ten were con-

idered relevant, as only five contained the required information.
oogle concentrated on presenting scientific papers about “index-

ng” but some of these works were originating from other sciences
uch as biology. In addition, PageRank played its role, as most of

able 9
he top-20 list for the query “distributed index construction” when the QuadRank algorithm

URL R G

1 nlp.stanford.edu R1 2
2 www.reedconstructiondata.com – 4
3 www.ims.uni-stuttgart.de R2 –
4 www.reedconstructiondata.com – 5
5 ilpubs.stanford.edu:8090 R3 7
6 nlp.stanford.edu – –
7 www.ics.uci.edu R4 –
8 lecs.cs.ucla.edu R5 –
9 www.ics.uci.edu R6 –

10 nlp.stanford.edu R7 3
11 ilpubs.stanford.edu:8090 R8 –
12 en.wikipedia.org – –
13 ilpubs.stanford.edu R9 –
14 www10.org R10 –
15 docs.huihoo.com R11 9
16 portal.acm.org – –
17 www.reedconstructiondata.com R12 –
18 www10.org R13 –
19 www.dcs.bbk.ac.uk R14 –
20 citeseerx.ist.psu.edu – 6
– −0.32 −0.05 −0.03
−0.32 – −0.30 −0.63
−0.05 −0.30 – 0.84
−0.03 −0.63 0.84 –

the results are well known and institutional sources of scientific
information. In addition, Ask returned a top-20 list of low quality,
since it was deceived by the term “index”, a word that is commonly
used to describe the home page of a Web site.

On the other hand, Yahoo! and Live Search performed better in
this case, since their top-10 rankings contained six pages containing
useful information. These engines also presented satisfactory top-
20 lists containing twelve relevant entries each.

QuadRank outperformed all of its opponents, since its top-10

and top-20 lists included 7 and 14 relevant results. Dogpile’s top-
10 list was of equal quality to Google and Ask, but its top-20 list
was more informative only than Ask’s. Unlike the previous case
where several sponsored links were included in the top-10 list
of Dogpile, for this query the metasearch engine provided only

is applied.

Y L A BC OA

1 2 1 1 1
4 – 3 2 5
8 5 – 8 6
– – 4 6 12
– 3 9 4 2
– 4 – 10 21
– 10 – 41 28

16 14 22 5 3
– 12 – 49 27
2 – 2 3 4
– 15 – 74 19
7 28 – 25 7
9 – – 28 42

10 – – 30 53
– – 11 10 9

24 – – 77 43
3 – – 18 52
– 11 – 46 32

30 – – 97 85
– – 5 6 8

http://nlp.stanford.edu/
http://www.reedconstructiondata.com/
http://www.ims.uni-stuttgart.de/
http://www.reedconstructiondata.com/
http://ilpubs.stanford.edu:8090/
http://nlp.stanford.edu/
http://www.ics.uci.edu/
http://lecs.cs.ucla.edu/
http://www.ics.uci.edu/
http://nlp.stanford.edu/
http://ilpubs.stanford.edu%3a8090/
http://en.wikipedia.org/
http://ilpubs.stanford.edu/
http://www10.org/
http://docs.huihoo.com/
http://portal.acm.org/
http://www.reedconstructiondata.com/
http://www10.org/
http://www.dcs.bbk.ac.uk/
http://citeseerx.ist.psu.edu/
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Table 10
Relevant documents in the engines’ top-10 lists for “distributed index construction”.

Engine 1 2 3 4 5 6 7 8 9 10 R

QuadRank R – R – R – R R R R 7
Google – R R – – – R R R – 5
Yahoo! R R – – – R – R R R 6
Live Search R R R – R R – – – R 6
Ask R R – – R R – – R – 5
Dogpile – R – – – – R R R R 5
Borda Count R – R R – – – R – R 5
Outranking Approach R R R R – R – – R – 6

Fig. 2. Measurements of Precision@10 and Precision@20 for various search engines for the query “distributed index construction”.

Table 11
Rankings correlation for the query “distributed index construction”.

Engine QuadRank G Y L A BC OA

QuadRank – −0.42 0.16 −0.09 −0.44 0.56 0.64
Google −0.42 – −0.53 −0.33 −0.50 −0.31 −0.32
Yahoo! 0.16 −0.53 – −0.18 −0.35 −0.20 −0.41
Live −0.09 −0.33 −0.18 – −0.27 −0.12 0.35
Ask −0.44 −0.50 −0.35 −0.27 – −0.38 −0.48
Borda Count 0.56 −0.31 −0.20 −0.12 −0.38 – 0.89
Outranking Approach 0.64 −0.32 −0.41 0.35 −0.48 0.89 –

Table 12
The top-20 list for the query “lungs cancer symptoms” when the QuadRank algorithm is applied.

URL R G Y L A BC OA

1 lungcancer.about.com R1 13 7 – – 10 15
2 www.merck.com R2 5 – 6 9 5 6
3 www.cancerssociety.org R3 – – – 14 42 74
4 www.webmd.com R4 10 2 7 – 4 4
5 www.emedicinehealth.com R5 2 – 3 5 2 3
6 www.cancerhelp.org.uk R6 4 – – 2 7 9
7 www.medicinenet.com R7 1 4 1 3 1 1
8 lungcancer.about.com – 12 6 – 18 6 5
9 www.webmd.com R8 – 1 5 – 8 7

10 www.emedicinehealth.com – 3 5 – 6 3 2
11 www.macmillan.org.uk R9 – – – 4 26 75
12 www.mayoclinic.com R10 11 11 – – 13 19
13 health.yahoo.com R11 14 13 – – 14 14
14 www.cancerhelp.org.uk R12 – – – 11 38 73
15 www.lungscancer.com – – – 2 – 24 34
16 www.cancer.gov R13 – 24 21 – 21 8
17 www.wrongdiagnosis.com R14 – 8 – – 31 63
18 www.cancerbackup.org.uk – – – – 22 63 71
19 www.webmd.com – 9 – – – 33 88
20 www.cancercenter.com R15 – 17 – – 50 50

http://lungcancer.about.com/
http://www.merck.com/
http://www.cancerssociety.org/
http://www.webmd.com/
http://www.emedicinehealth.com/
http://www.cancerhelp.org.uk/
http://www.medicinenet.com/
http://lungcancer.about.com/
http://www.webmd.com/
http://www.emedicinehealth.com/
http://www.macmillan.org.uk/
http://www.mayoclinic.com/
http://health.yahoo.com/
http://www.cancerhelp.org.uk/
http://www.lungscancer.com/
http://www.cancer.gov/
http://www.wrongdiagnosis.com/
http://www.cancerbackup.org.uk/
http://www.webmd.com/
http://www.cancercenter.com/
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Table 13
Relevant documents in the engines’ top-10 lists for “lungs cancer symptoms”.

Engine 1 2 3 4 5 6 7 8 9 10 R

QuadRank R R R R R R R – R – 8
Google – R – R R R R – – R 6
Yahoo! R R R – – – R R R R 7
Live Search – – R R R R R R – R 7
Ask R R – R R – – – R R 6
Dogpile – – – – – R R R R R 5
Borda Count R R – R R – R R – R 7
Outranking Approach R – R R – R R R R R 8
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Fig. 3. Measurements of Precision@10 and Precision@20 fo

rganic results. Five of them were relevant to the query, whereas
he others provided information regarding distributed audio and
ideo communication systems and distributed process control
ystems.

The Borda Count method generated results of equal quality to
ogpile; five relevant items in the top-10 list and only eight in the

op-20. It becomes obvious that a simple rank aggregation method
hat is heavily depended on the individual rankings of the compo-
ent engines, cannot always provide robust ranking. On the other
and, the component of the QuadRank algorithm (Eq. (4)) which
xamines the titles, the snippets and the URLs of the collected ele-
ents, leads to result lists of improved quality.
Once again the Outranking approach was more effective than

he Borda Count method since it fetched six relevant documents in
ts top-10 list and twelve in its top-20. However, the method did
ot produce as qualitative rankings as QuadRank.

In Table 10 we depict the relevancy of each item of the examined
op-10 lists to the query in question. Moreover, in Fig. 2 we illustrate
he precision of each ranking algorithm, measured at cutoff points

0 and 20.

Finally, in Table 11 we evaluate the correlation of the various
ankings of the experiment, by recording the values of the Spear-
an’s rho measure.

able 14
ankings correlation for the query “lungs cancer symptoms”.

Engine QuadRank G Y

QuadRank – −0.41 0.22
Google −0.41 – −0.14
Yahoo! 0.22 −0.14 –
Live −0.26 −0.48 −0.58
Ask −0.26 −0.01 −0.39
Borda Count 0.65 0.82 −0.07
Outranking Approach 0.50 0.63 0.06
ous search engines for the query “lungs cancer symptoms”.

The third query we present here originates from the broader
fields of health and medication. Here we are interested in locat-
ing the symptoms of the cancer of lungs, hence the query we
phrase is lungs cancer symptoms. The information need is quite tar-
geted in this query, since we desired to attest the accuracy of our
algorithm in similar cases. Hence, the documents containing infor-
mation regarding only the causes or the treatments of the disease
are considered as irrelevant. The same holds for results whose con-
tent is about other types of cancers or other types of lungs maladies.

A page is considered relevant to the specified query, only if it
contains the desired information itself; not because it includes sets
of links to other pages which “claim” to provide such informa-
tion. This rule was strictly followed by our colleagues during the
identification of relevant results.

Similarly to the previous experiments, our metasearch engine
requested 30 results from each component engine and after the
merging process, a set of 91 elements is generated and ranked. In
Table 12 we record the elements of the top-20 list that QuadRank
produced and also, the individual rankings that each one received

by the component engines. As before, that dash symbol represents
the absence of the element from an engine’s result list.

QuadRank presented the most qualitative top-10 list, since
8 results were relevant to the given query. Furthermore, the

L A BC OA

−0.26 −0.26 0.65 0.50
−0.48 −0.01 0.82 0.63
−0.58 −0.39 −0.07 0.06

– −0.50 −0.62 −0.59
−0.50 – 0.16 −0.07
−0.62 0.16 − 0.73
−0.59 −0.07 0.73 –
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Table 15
QuadSearch response times for various rank aggregation methods and 30 requested
results per engine.

Query tret N tpr

Borda Count Outranking QuadRank

tokyo hotel 1.53 90 0.04 0.09 0.05
artificial
fertilizers

1.41 87 0.04 0.08 0.05

free flv player 1.34 80 0.03 0.07 0.04
lewis hamilton 1.56 90 0.04 0.09 0.05
markov chains 1.38 79 0.03 0.07 0.04
greenhouse
effect

1.30 77 0.02 0.07 0.04

h-index 1.42 87 0.04 0.08 0.04
marine biology 1.38 85 0.04 0.08 0.05
public key
encryption

1.64 90 0.04 0.11 0.06

voice over ip 1.55 89 0.04 0.10 0.06
waterfall 1.29 94 0.04 0.10 0.04
scorched earth 1.34 85 0.04 0.08 0.05
apple 1.21 92 0.04 0.09 0.04
cold war 1.22 84 0.03 0.08 0.04
L. Akritidis et al. / The Journal of Sy

rst seven results were all of high informational quality, as they
ncluded adequate reference regarding the subject of the query. Live
earch and Yahoo! were also effective, although their top-10 rank-
ngs included one result less than QuadRank’s list. Regarding the
ther two component engines, Google and Ask, they were slightly
ess efficient, by including six relevant results in their top-10 rank-
ngs.

The first opponent rank aggregation method, Borda Count, con-
tructed a top-10 list comprised of seven relevant documents and it
as outperformed by our proposed method. On the other hand, the
utranking approach returned results that were of equal quality to

hose of QuadRank. The other metasearch engine that we exam-
ne in our experiments, Dogpile, exhibited poor performance and
t was the worst among our examined search engines, by building

top-10 list which contained only five relevant results. Table 13
rovides a detailed image of the top-10 rankings of the examined
earch engines.

The top-20 ranking of Borda Count is significantly improved
ompared to the top-10 list and was equally qualitative com-
ared to the ones constructed by our QuadRank algorithm and
he Yahoo! component engine. In total, the top-20 lists of these
hree ranking methods included 15 relevant documents. The left
nd right diagrams of Fig. 3 illustrate the precision values of the
arious systems and algorithms for the top-10 and top-20 listings
espectively.

Finally, in Table 14 we record the correlation of the rankings
sing the Spearman’s rho measure.

The example queries we have studied here reveal that a single
earch engine cannot perform equally well for all types of queries.
lthough Google was effective for “tickets for uefa champions league
nal 2010”, it did not provide equally informative results for the
uery “distributed index construction”. The opposite behavior was
xhibited by Live Search and Yahoo, which presented informative
op-10 lists in the second and third cases.

On top of that, our QuadRank scoring method performed
teadily well on all submitted queries. This sense is present on most
ases, as our metasearch engine manages to eliminate the compo-
ent engines’ weak spots and combine their advantages efficiently.

Regarding the competitor rank aggregation methods, QuadRank
utperformed Borda Count by a significant margin for all of the
hree queries we have tested. QuadRank was also more effective
han the Outranking approach on two cases and equally accurate
n the third.

.3. Evaluation of QuadSearch’s response times

In the previous subsection, we have demonstrated how the use
f the proposed rank aggregation method can lead to better rank-
ngs, when compared to the rankings that the component engines
roduce. We have indicated that the term “better”, concerns both
recision and quality of the returned results.

The second most important measure of a system’s performance,
s how quickly it responds to a given query. It may well produce
ualitative results, but this could be close to useless, unless these
esults are produced in reasonable times.

Before we proceed to the evaluation of QuadSearch’s response,
e discuss all the time penalties that any metasearch engine has to

uffer, before it presents a list of results to the user. We also define
dle time, as the total intermediate time between the moment the
ser submits a query and the moment that the engine presents the

esults. All idle times presented here, are expressed in seconds. In
ddition, henceforth, we will use the term server, to refer to the
achine that hosts the search system.
The idle time is affected by numerous factors. Generally, we can-

ot exactly calculate it beforehand; we can only estimate a value,
iran nuclear
weapons

1.54 99 0.05 0.11 0.07

Average 1.41 87.2 0.037 0.086 0.048

which is computed using the following relationship:

ttot = treq + tres + tret + tpr (8)

where

• treq represents the request time, that is, the time that the system
needs to send the request to its component engines. It depends on
the server’s upload capabilities. This time is usually infinitesimal.

• tres is the total time the metasearch engine has to wait for the
component engines to respond. In other words, this is the time
a single engine consumes to search its index structure and apply
its own ranking algorithm to form the results’ list. As it is obvious,
there is no technique that can be applied to improve this timing.

• tret signifies the results’ pages downloading duration. This is the
most unstable factor that affects a metasearch engine’s response.
It depends on the server’s download capability, the number of
concurrent users, the daytime and other parameters that are rig-
orous to manage. In general, improving the network capacity of
the server, leads to smaller download delays.

• tpr indicates the overhead added by the execution of the fusion
and ranking algorithms of the metasearch engine. The applica-
tion of additional filters (such as the anti-spam filter and engine
bombing protection), further increases this time.

To evaluate the QuadSearch’s speed, we have formed a set of
fifteen queries. During the tests we tried to identify some terms
whose inverted lists were stored in the component engines’ caches
and some that were not. These queries have been submitted to
QuadSearch with various parameters enabled and disabled, for all
the proposed rank aggregation methods. We also exploit all of the
four component engines available.

In Table 15 we record the time performance of various rank
aggregation methods in the environment of QuadSearch for each
query of our set, when the system requests k = 30 results from its
component engines. The second column shows the retrieval times
tret, that is, the time the metasearch engine needs to download the
result lists from the component engines. In the third column we

record the length of the list which derives from the fusion of the
input rankings, whereas the three last columns contain the times
each algorithm needs to rank the merged list.

Borda Count is the fastest algorithm and this is expected since
the score of each document is computed by simply adding the indi-
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Table 16
QuadSearch response times for various rank aggregation methods and 100 requested
results per engine.

Query tret N tpr

Borda Count Outranking QuadRank

tokyo hotel 2.01 276 0.23 0.82 0.31
artificial fertilizers 1.95 295 0.25 0.94 0.37
free flv player 1.94 259 0.21 0.74 0.35
lewis hamilton 2.13 277 0.22 0.85 0.30
markov chains 1.98 267 0.21 0.78 0.36
greenhouse effect 1.99 255 0.21 0.71 0.28
h-index 2.03 297 0.26 0.97 0.31
marine biology 2.13 269 0.22 0.80 0.29
public key
encryption

2.07 292 0.25 0.93 0.38

voice over ip 2.22 296 0.26 0.96 0.57
waterfall 2.25 306 0.26 1.02 0.33
scorched earth 1.99 278 0.22 0.85 0.32
apple 1.91 274 0.22 0.82 0.26
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cold war 2.07 286 0.24 0.88 0.33
iran nuclear
weapons

2.40 314 0.27 1.08 0.40

Average 2.07 281.6 0.24 0.87 0.34

idual rankings it received by the component engines. QuadRank is
omehow slower (by a margin of about 23%) since the evaluation of
he Z(c) and U(c) scores is slightly more expensive. The Outranking
pproach is by far the slowest method since each document must
e compared with the rest N − 1 documents in all 4 input rankings.
herefore, it is approximately 2.3 times slower than Borda Count
nd 1.8 times slower than QuadRank.

Notice that processing times for Borda Count and the Out-
anking Approach depend only on the number of documents of
he merged list. Therefore, the more documents the merged list
ontains, the slower Borda Count and the Outranking Approach
ecome. On the other hand, apart from the number of documents
f the merged list, the timings of QuadRank also depend on the
ength of the submitted query due to the existence of zone weight-
ng. Consequently, we expect from longer queries to be processed at
ower rates.

In Table 16 we repeat the experiment by requesting top-100
ists. Apparently, in this case the average retrieval time increases
ignificantly as more time is required to download larger lists. Fur-
hermore, the fusion and ranking duration increases, since now
e have to process more documents. Notice that while QuadRank

emains slower than Borda Count by a relatively stable percent-
ge of 24%, the performance of the Outranking Approach degrades
onsiderably faster (2.5 times slower than QuadRank and 3.6 times
lower than Borda Count).

. Concluding remarks and future work

In this article, we considered the issue of developing a new
etasearch engine to assist in the process of Web information

etrieval. The main motivation to develop this metasearch engine
as the common intuition that a rank aggregation algorithm should

a) be related to the comparison of the top-k lists of each con-
entional metasearch engine, and (b) offer efficient computation
nd low response times. Thus, we came up with a new method
or rank aggregation, i.e., the QuadRank method. We injected some
ew parameters, like the number of the top-k lists that a page
ppears, the total number of exploited search engines and the
ize of the top-k lists. QuadRank is also the only rank aggrega-

ion method which takes into consideration additional parameters
uch as zone weighting, the metadata of each collected docu-
ent and URL analysis. The best way to experiment and test the

ntroduced method was to develop a new metasearch engine,
amed QuadSearch, a name related to the current number of
and Software 84 (2011) 130–143

exploited engines. The new metasearch engine is publicly available
at http://quadsearch.csd.auth.gr.

We have tested the new method for both effectiveness and
efficiency against other rank aggregation methods (Borda Count,
Outranking approach) using data from the TREC conference and
also, in the real-world of metasearching. QuadRank outperformed
its competitors in most cases by a significant margin.

References

Ailon, N., 2007. Aggregation of partial rankings, p-ratings and top-m lists. In: Pro-
ceedings of the International ACM-SIAM Symposium on Discrete Algorithm
(SODA), pp. 415–424.

Ailon, N., Charikar, M., Newman, A., 2005. Aggregating inconsistent information:
ranking and clustering. In: Proceedings of the ACM International Symposium
On Theory of Computing (STOC), pp. 684–693.

Allen, J., 2009. Comparison of metasearch engines. Tech. rep., Southern
Methodist University, CSE8337. Available at http://jdadesign.net/wp-
content/uploads/2010/01/HW2b.pdf.

Aslam, J.A., Montague, M.H., 2001a. Metasearch consistency. In: Proceedings of the
ACM International Conference on Research and Development in Information
Retrieval (SIGIR), pp. 386–387.

Aslam, J.A., Montague, M.H., 2001b. Models of metasearch. In: Proceedings of the
ACM International Conference on Research and Development in Information
Retrieval (SIGIR), pp. 276–284.

Beg, M.M.S., Ahmad, N., 2003. Soft computing techniques for rank aggregation on
the World Wide Web. World Wide Web Journal 6 (1), 5–22.

Coppersmith, D., Fleischer, L., Rudra, A., 2006. Ordering by weighted number of wins
gives a good ranking for weighted tournaments. In: Proceedings of the Interna-
tional ACM-SIAM Symposium on Discrete Algorithm (SODA), pp. 776–782.

DeConde, R.P., Hawley, S., Falcon, S., Clegg, N.B., Etzioni, K.R., 2006. Combining results
of microarray experiments: a rank aggregation approach. Statistical Applications
in Genetics and Molecular Biology 5 (1), 1–23.

Dwork, C., Kumar, R., Naor, M., Sivakumar, D., 2001. Rank aggregation methods for
the Web. In: Proceedings of the ACM International Conference on World Wide
Web (WWW), pp. 613–622.

Fagin, R., Kumar, R., Sivakumar, D., 2003. Efficient similarity search and classification
via rank aggregation. In: Proceedings of the ACM International Conference on
Management of Data (SIGMOD), pp. 301–312.

Farah, M., Vanderpooten, D., 2007. An outranking approach for rank aggregation in
information retrieval. In: Proceedings of the ACM International Conference on
Research and Development in Information Retrieval (SIGIR).

Liu, Y.-T., Liu, T.-Y.T., Ma, Q., Li, Z.-M.H., 2007. Supervised rank aggregation. In: Pro-
ceedings of the ACM International Conference on World Wide Web (WWW), pp.
481–489.

Lu, W., Robertson, S., MacFarlane, A., 2006. Field-weighted XML retrieval based on
BM25. Lecture Notes in Computer Science 3977, 161–171.

Manning, C.D., Raghavan, P., Schutze, H., 2008. Introduction to Information Retrieval.
Cambridge University Press.

Meng, W., Yu, C., Liu, K.-L., 2002. Building efficient and effective metasearch engines.
ACM Computing Surveys 34 (1), 48–89.

Oztekin, B.U., Karypis, G., Kumar, V., 2002. Expert agreement and content based
reranking in a metasearch environment using Mearf. In: Proceedings of the ACM
International Conference on World Wide Web (WWW), pp. 333–344.

Renda, M.E., Straccia, U., 2003. Web metasearch: rank vs score based rank aggrega-
tion methods. In: Proceedings of the ACM International Symposium on Applied
Computing (SAC), pp. 841–846.

Saari, D.G., 2000. The mathematics of voting: democratic symmetry. Economist
(March), 83.

Sculley, D., 2007. Rank aggregation for similar items. In: Proceedings of the SIAM
Conference on Data Mining (SDM).

Shokouhi, M., 2007. Segmentation of search engine results for effective data-fusion.
In: Proceedings of the European Conference on Information Retrieval (ECIR). Vol.
4425 of Lecture Notes in Computer Science, pp. 185–197.

Soboroff, I., Craswell, N., Clarke, C., 2009. Overview of the Trec 2009 Web Track.
Souldatos, S., Dalamagas, T., Sellis, T., 2005. Sailing the Web with Captain Nemo: a

personalized metasearch engine. In: Proceedings of the ICML workshop: Learn-
ing in Web Search (LWS), Bonn, Germany.

Spink, A., Jansen, B.J., Blakely, C., Koshman, S., 2006. Overlap among major Web
search engines. In: Proceedings of the IEEE International Conference on Infor-
mation Technology: New Generations (ITNG), pp. 370–374.

Sugiura, A., Etzioni, O., 2000. Query routing for Web search engines: architecture
and experiments. Computer Networks 33 (1–6), 417–429.

Tan, P.-N., Jin, R., 2004. Ordering patterns by combining opinions from multiple
sources. In: Proceedings of the ACM International Conference on Knowledge
Discovery and Data Mining (SIGKDD), pp. 695–700.
Vogt, C.C., 1999. Adaptive combination of evidence for information retrieval. Ph.D.
Thesis. University of California at San Diego.

Vogt, C.C., Cottrell, G.W., 1999. Fusion via a linear combination of scores. Information
Retrieval 1 (3), 151–173.

Young, H.P., Levenglick, A., 1978. A consistent extension of Condorcet’s election
principle. SIAM Journal on Applied Mathematics 35 (2), 285–300.

http://quadsearch.csd.auth.gr/
http://jdadesign.net/wp-content/uploads/2010/01/HW2b.pdf


stems

L
E
2
a
c
v
m

D
i
P
a
U
p
H

L. Akritidis et al. / The Journal of Sy

eonidas Akritidis was born in Thessaloniki, Greece in 1979. He received B.Sc. in
lectrical and Computer Engineering from Aristotle University of Thessaloniki, in
003. Since 2004 he worked as a software engineer for commercial applications,
nd as a teacher of Informatics in several Greek highschools. Currently, he is a Ph.D.
andidate at the Department of Computer and Communication Engineering of Uni-
ersity of Thessaly, Greece. His research interests include Web indexing and ranking,
etasearching, scientometrics and link analysis in social networks.

imitrios Katsaros was born in Thetidio (Farsala), Greece in 1974. He received a B.Sc.

n Computer Science from Aristotle University of Thessaloniki, Greece (1997) and a
h.D. from the same department on May 2004. He spent a year (July 1997–June 1998)
s a visiting researcher at the Department of Pure and Applied Mathematics at the
niversity of L’Aquila, Italy. Currently, he is a lecturer with the Department of Com-
uter and Communication Engineering of University of Thessaly (Volos, Greece).
e is editor of the book “Wireless Information Highways” (2005), co-guest editor
and Software 84 (2011) 130–143 143

of special issues on Cloud Computing published in IEEE Internet Computing and
IEEE Network magazines, and publication advisor for the greek language of the
book “Google’s PageRank and Beyond: The Science of Search Engine Rankings”. His
research interests are in the area of distributed systems, including the Web and Inter-
net, mobile and pervasive computing, mobile/vehicular ad hoc networks, wireless
sensor networks.

Panayiotis Bozanis graduated from the Department of Computer Engineering and
Informatics, University of Patras, Greece, in 1993. He received his Ph.D. Degree from

the same Department in 1997. He is currently an Assistant Professor at the Depart-
ment of Computer and Communication Engineering, University of Thessaly, Greece.
His publications comprise several journal and conference papers on Data Struc-
tures, Computational Geometry, Information Retrieval, and Indexing Techniques,
and four books in Greek about Data Structures and Algorithms. He is an EATCS
member.


	Effective rank aggregation for metasearching
	Introduction
	Preliminaries and relevant rank aggregation methods
	QuadRank vs. Borda count
	QuadRank vs. Outranking approach

	QuadRank
	Dealing with individual rankings
	Zone weighting
	URL analysis
	QuadRank scores

	Evaluation of the proposed method
	Retrieval effectiveness evaluation with TREC data
	Retrieval effectiveness evaluation with test queries
	Evaluation of QuadSearch's response times

	Concluding remarks and future work
	References


