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a b s t r a c t

In this paper we propose a novel topology-control algorithm, called edge betweenness centrality (EBC).

EBC is based on the concept of betweenness centrality, which has been first introduced in the context of

social network analysis (SNA), and measures the ‘‘importance’’ of each node in the network. This

information allows us to achieve high quality of service (QoS) in wireless sensor networks by evaluating

relationships between entities of the network (i.e., edges), and hence identifying different roles among

them (e.g., brokers, outliers), thus controlling information flow, message delivery, latency and energy

dissipation among nodes. The experimental evaluation and analysis of EBC in comparison to other

state-of-the-art topology control algorithms shows that our algorithm outperforms the competitor ones

in all observed cases.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Recent advances in low-power and short-range-radio technol-
ogy arisen during last few years have enabled a rapid develop-
ment of wireless sensor networks (WSN). The range of
applicability of WSN is very wide, and spans from environmental
sensor networks monitoring (environmental) parameters, such as
temperature and humidity, to industrial control robotics, from
disaster prevention systems to emergency management systems,
and so forth. Sensors are tiny, usually battery-operated devices
with radio and computing capabilities, which are used to coop-
eratively monitor physical or environmental conditions.

As regards research issues of sensor networks, several efforts have
been done by both the academic and industrial research community,
mainly in the context of routing algorithms (Heinzelman et al., 2000;
Intanagonwiwat et al., 2003), network coverage aspects (Thai et al.,
2008; Liu et al., 2005; Shih et al., 2009), storage issues (Mathur et al.,
2006; Sheng et al., 2006) and topology control (Manolopoulos et al.,
2010; Shen et al., 2007; Liu and Li, 2003). The common denominator
of all these efforts is represented by the goal of maximizing energy
conservation across the network, in order to gain efficacy and
efficiency, as maximizing energy conservation corresponds to max-
imizing network lifetime. For instance, as regards specific data
ll rights reserved.
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management issues over sensor networks (Cuzzocrea, 2009), max-
imizing energy conservation means that multi-step maintenance and
query algorithms can be executed over the target sensor network,
thus involving in more effective data management capabilities rather
than the case of single-step algorithms. Another motivation of the
need for energy conservation in sensor networks relies on inherent
technological properties of sensors. In fact, sensors are unlikely to be
recharged, especially since they may be deployed in unreachable
terrains, or, in some cases, they may be disposed after the monitoring
application running over the target network ends its execution.

In order to reduce energy consumption, topology-control algo-

rithms have been proposed in literature (Shen et al., 2007; Liu and
Li, 2003; Hackmann et al., 2008; Huang et al., 2002; Liu et al.,
2008; Li et al., 2005; Pan et al., 2003; Ramanathan and Rosales-
Hain, 2000; Tseng et al., 2002; Wattenhofer et al., 2001; Jia et al.,
2004). The final goal of these algorithms consists in reasoning-
over and managing the topology of the graph modeling the target
sensor network in order to reduce energy consumption as much
as possible hence increase network lifetime accordingly. A differ-
ent line of research, which appeared recently, proposes driving
sensor network topology control in terms of quality of service

(QoS) requirements (Liu et al., 2008) over the target sensor
network itself. Several QoS-based requirements have been
designed and developed in this context, depending on the
particular application scenario ranging from real-time video and
content provisioning to time-critical control systems, and so forth
(see Liu et al., 2008 for a complete survey of typical case studies).
Given a set of nodes performing a specific task which is critical for
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the target sensor network application (e.g., sink nodes in envir-
onmental sensor networks), the basic idea behind topology-
control algorithms is to select from the target network appro-
priate logical neighbors of the former nodes, namely a subset of
physical neighbors of the former nodes that can be used to perform
application-specific procedures (e.g., message transmission) with-
out the need of involving the rest of physical neighbors during the
execution of these procedures. QoS-based topology-control algo-
rithms select the suitable set of logical neighbors such that input
QoS requirements can be satisfied.

Inspired by motivations above, in this paper we investigate the
problem of QoS-based topology control over homogenous WSN.
Given (i) a set of wireless nodes in a plane such that nodes have
the same transmitting power and bandwidth capacity and (ii) QoS
requirements between node pairs, our problem consists in finding
a network topology that can simultaneously meet the input QoS
requirements and minimize the maximal power utilization ratio
of nodes. In particular, in our research QoS requirements are
modeled in terms of simple-yet-effective node connectivity, so
that message transmission can be ensured (while node connec-
tivity can be preserved in order to ensure correct message
delivery), and network lifetime can be increased as much as
possible accordingly. In this scenario, avoidance of hotspots also
needs to be carefully considered. Therefore, adaptive tasks that
depend on the current logical neighbor seem to play the role of
most promising strategy to be investigated in order to avoid fast
battery depletion.

Looking at deeper details, in our research we propose a
weighted, bidirectional topology-control algorithm, called edge

betweenness centrality (EBC), and experimentally evaluate this
protocol against a set of low complexity, distributed topology-
control algorithms, namely Gabriel Graph (GG) (Gabriel and Sokal,
1969), Relative Neighborhood Graph (Toussaint, 1980) and Close-
ness Centrality (Freeman, 1979). Fundamentals of our approach
can be found in the conceptual basis drawn by several centrality
measures that have been proposed in order to model and evaluate
the importance of a node in a network (Girvan and Newman,
2002; Brandes, 2008). These measures have been initially applied
in the context of social network analysis (SNA), and later to other
areas as well, such as biological networks (Yoon et al., 2006).

Freeman (1977, 1979) defines the betweenness of a node as a
possible centrality measure for detecting the importance of that
node within the target network, thus achieving the fundamental
concept of betweenness centrality. This concept found on the
property stating that vertices that occur on many shortest paths
between other vertices have higher betweenness than those
with lower occurrences. Closeness centrality (Freeman, 1979)
pinpoints vertices that tend to have short geodesic distances from
other vertices with in the network. In network analysis, closeness
is preferred over shortest-path length, as closeness gives higher
values to more central vertices (Freeman, 1979). Finally, Eigen-
vector centrality (Bonacich, 1972) assigns relative scores to all
nodes in the network based on the principle that connections to
high-scoring nodes provide to the global score of the actual node
a higher contribution rather than the one provided by connec-
tions to low-scoring nodes. For instance, Google’s PageRank (Brin
et al., 1999) is a variant of the eigenvector centrality measure. Our
research focuses on a meaningful variation of the betweenness
centrality concept, namely edge betweenness centrality (Girvan
and Newman, 2002; Newman, 2004), and its application to the
leading context of sensor networks.

Summarizing, the contributions of this paper are the following:
�
 an innovative weighted, bidirectional topology-control algo-
rithm, EBC, and its application to the leading context of sensor
networks;
�
 a comprehensive experimental evaluation of algorithm EBC,
and its comparison with a very popular topology-control
algorithm, GG, on top of the well-known simulation environ-
ment JSim (Sobeih et al., 2006);

�
 critical analysis and discussion on performance of the two

comparison topology-control algorithms, EBC and GG.

The rest of the paper is organized as follows. In Section 2
we discuss related work on topology control algorithms over
networks. Section 3 describes in detail algorithm EBC. Section 4
focuses on state-of-the-art distributed and low complexity meth-
ods for topology control that is related to our research. Section 5
is devoted to the experimental evaluation and analysis of EBC in
comparison to other state-of-the-art topology-control algorithms.
Finally, Section 6 contains conclusions and future work of our
research.
2. Related work

There exists considerable related work addressing topology-
control issues over networks, even focalizing on QoS-based
topology control. As regards studies on topology management
for energy conservation in networks, it has been demonstrated
that both powering off redundant nodes and lowering radio
power while maintaining node connections can contribute to
efficient power saving. In light of this assumption, Shen et al.
(2007) introduced the Local Shortest Path (LSP) algorithm. In the
LSP approach, each node makes use of link weights in order to
compute the shortest paths between itself and neighboring nodes.
Then, all second nodes on these shortest paths are selected as
logical neighbors. The final step of algorithm LSP involves in
adjusting the power transmission of so-selected logical nodes to
save energy.

Li et al. (2005) instead propose algorithm Localized Minimum
Spanning Tree (LMST), which computes a ‘‘power-reduced’’ net-
work topology by constructing a minimum spanning tree over the
network in a fully distributed manner. The aim of this approach
relies in the evidence that the power-reduced network is less
energy-consuming than the original network.

EasiTPQ (Liu et al., 2008) is another QoS-based topology-
control algorithm. EasiTPQ found on the assumption that each
node in the network has different functionalities during data
transmission, e.g., some nodes bear more data relay tasks whereas
some other nodes only transmit data generated by themselves. In
order to achieve the desired QoS, EasiTPQ schedules as active
nodes that are more involved in relaying data tasks rather than
generating data flows.

Wattenhofer et al. (2001) propose a simple-yet-effective dis-
tributed algorithm according to which each node makes local
decisions about its transmission power, such that these local
decisions then collectively guarantee global connectivity of the
network. Specifically, based on directional information, a node
grows it transmission power until it finds a neighbor node in
every possible direction. The resulting network topology
increases network lifetime by reducing transmission power, and,
in turn, even traffic interference, thanks to the deriving avail-
ability of low-degree nodes. Huang et al. (2002) further extend
Wattenhofer et al. (2001) to the case of using directional
antennas.

Ramanathan and Rosales-Hain (2000) describe a centralized
spanning tree algorithm for building connected and bi-connected
networks with the goal of minimizing the maximum transmission
power for each node. Two optimal, centralized algorithms,
namely CONNECT and BICONN-AUGMENT, are proposed for the
case of static networks. Both are greedy algorithms, and resemble
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Kruskal’s minimum cost spanning tree algorithm (Kruskal, 1956).
For the case of hoc wireless networks, two distributed heuristics
hare proposed, namely LINT and LILT. However, these heuristics
do not guarantee network connectivity.

Jia et al. (2004) focus the attention on the problem of
determining a network topology able to meet input QoS require-
ments in terms of end-to-end delay and bandwidth. The proposed
scheme adopts an optimization criterion whose goal is to mini-
mize the maximum per-node power consumption. In Jia et al.
(2004), authors demonstrate that, when network traffic is ‘‘split-
table’’, a sub-optimal solution can be achieved by means of linear
programming techniques.

Finally, alternative approaches to the topology-control
problem over sensor networks have been proposed recently.
Angelopoulos and Nikoletseas (2009a,b) are significant instances
of these classes of innovative topology-control algorithms, where
the topology aspect is addressed from a different but relevant
perspective. In more detail, Angelopoulos and Nikoletseas
(2009a,b) basically suggest to exploit the sensor motion to
adaptively propagate information based on local conditions (such
as high placement concentrations), so that the mobile sink
gradually ‘‘learns’’ the network and accordingly optimizes its
motion as to collect data faster.
3. Edge betweenness centrality: a novel topology-control
protocol for sensor networks

During past years, vertex betweenness has been studied in the
vest of a measure of the centrality and influence of nodes in
networks (Freeman, 1977, 1979). Given a node vi, vertex between-
ness is defined as the number of shortest paths between pairs of
nodes that run through vi. Vertex betweenness is a measure of the
influence of a node over the information flow among nodes of the
network, especially in scenarios such that information flowing over
the target network primarily follows shortest available paths.

In order to compute betweenness centrality, Brandes (2001)
proposes an efficient backwards algorithm which starts from leaf
nodes of a tree of shortest paths and progressively accumulates
the leaf nodes’ betweenness values moving bask toward the root
node of the tree.

Girvan–Newman algorithm (Girvan and Newman, 2002)
extends the definition of betweenness centrality from network
vertices to network edges, via introducing the concept of Edge

Betweenness (EB). Let G¼/V ,ES be a connected undirected graph,
and vi and vj two nodes in G, respectively. Let svivj

denote the
number of shortest paths between nodes vi and vj. Let svivj

ðeÞ

denote the number of shortest paths between vi and vj which go
through eAE. Betweenness centrality of an edge eAV , denoted by
EB(e), is defined as follows:

EBðeÞ ¼
X

vi AV

X

vj AV

svivj
ðeÞ

svivj

ð1Þ

In its original implementation (Newman, 2004), which focuses
on unweighted, undirected networks, EB analysis makes use of
the algorithm breadth-first search (BFS). Girvan–Newman algo-
rithm (Girvan and Newman, 2002) works in the opposite way.
Instead of trying to construct a measure that determines edges
that are the ‘‘most central’’ for network communities, it focuses
on edges that are the ‘‘least central’’ for network communities, i.e.,
edges that are ‘‘most between’’ for network communities. Com-
munities are detected by progressively removing edges from the
original graph, rather than by adding the strongest edges to an
initially empty network. In our research, we do not use the
centrality measure to find communities but instead to select the
most important edges, energy-wise, to propagate messages.
Specifically, steps that are used to compute the edge between-
ness centrality index are the following:
1.
 compute shortest paths through the network by means of
Dijkstra’s algorithm (Dijkstra, 1959);
2.
 for each edge, compute the edge betweenness centrality index
like in Newman (2004), but instead of unweighted edges use
the average energy of the two connecting nodes as edge
weight.

Based on the edge betweenness centrality index, our algorithm
EBC selects logical neighbors of actual node based on the follow-
ing rules:
�
 for each node, logical neighbors must cover the two-hop node
neighborhood;

�
 one-hop neighbors with the highest-scoring betweenness

centrality index are selected.

Moreover, in order to avoid hotspots, our algorithm recalcu-
lates the edge betweenness centrality index based on the corre-
sponding energy levels of each node, therefore selecting different
edges to be part of the logical neighborhood of each node.
4. Distributed and low complexity competing methods for
topology control

In this section we present in more details some popular
distributed methods for topology control in wireless sensor net-
works that comprise the basic competitors of our proposed EBC
algorithm.

4.1. Topology control with the Gabriel Graph

Gabriel Graph has been introduced by Gabriel and Sokal
(1969). Formally, given a graph G¼/V ,ES and two vertices v1

and v2 in V, we say that v1 and v2 are adjacent if the closed disc of
diameter v1v2 does not contain other vertices of V. In the context
of sensor networks, we extend the basic adjacency concept above
and we say that a sensor node si is connected with a sensor node
sj, which lies within the si’s transmission range, if there not exist
another node sk which is contained by the closed disc of diameter
sisj. This simple-yet-effective method is used by algorithm GG to
find logical neighbors of a given sensor node.

In more detail, in our JSim-based experimental framework,
logical neighbors of a given sensor node are found by algorithm
GG according to the following steps:
1.
 each sensor node broadcasts its location—at the end, every
node in the sensor network knows its neighbors and their
locations;
2.
 each sensor node si determines its logical neighbor set Li by
computing the closed discs of diameters equal to the distance
between the location of si and each other physical node
belonging to the si’s physical neighborhood set Pi—for each
physical neighbor sj in Pi, if the disc of diameter sisj does not
contain other physical neighbors of Pi then sj becomes a logical
neighbor of si.

4.2. Topology control with the Relative Neighborhood Graph (RNG)

The Relative Neighborhood Graph (RNG) of a point set is a
straight line graph that connects two points from the point set if
and only if there is no other point in the set that is closer to both
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points than they are to each other. A triangulation of a point set is
a maximal set of nonintersecting line segments (called edges)
with vertices in the point set.

The Relative Neighborhood Graph of a graph G¼ ðV ,EÞ, denoted
by RNG(G), is the set of all edges uvAE such that there is no
vertex or point w where uwAE, wvAE and JuwJoJuvJ and
JwvJoJuvJ.

4.3. Topology control with the Closeness Centrality (CC)

In graph theory closeness is a centrality measure of a vertex
within a graph. Vertices that are ‘shallow’ to other vertices (that
is, those that tend to have short geodesic distances to other
vertices with in the graph) have higher closeness. Closeness is
preferred in network analysis to mean shortest-path length, as it
gives higher values to more central vertices, and so is usually
positively associated with other measures such as degree.
5. Experimental evaluation and analysis

In order to evaluate the performance of the proposed EBC
topology-control protocol, we set up a framework that simulates
the basic factors of a wireless environment and implemented in
this framework the competitors described in Section 4, namely
GG, RNG, and CC.

5.1. Simulation model

In our experimental framework, we have developed a simula-
tion model based on JSim, a well-known Java-based simulation
environment for numerical analysis (Sobeih et al., 2006). In
particular, in our simulation environment, the AODV routing
protocol (Perkins and Royer, 1999) is deployed within the
reference WSN. Also, we use IEEE 802.11 as the MAC protocol
and the free space model as the radio propagation model.
Wireless bandwidth is assumed to be 2 Mbps.

We performed a large number of experiments on top of
various sensor network topologies, and by ranging several experi-
mental parameters, but for the interest of space, here we present
a subset of our experimental results. Table 1 summarizes the
simulation parameters.

The simulation details are as followed:
�
 The simulation time was 300 s. The records were produced
during the first half of the simulation time, whereas the
queries were sent during the second half.

�

 7000
Number of Physical Neighbors

14m
While the record is propagated in the network, its TTL value
(measured in hops) is decreased by one each time the record is
stored at a sensor. The initial TTL value is 10.
17m
�
 5000

 6000

or
s

The events and queries are generated according to a Poisson
distribution with the rates le and lq taking the values 0.128,
0.256, 0.512 and 0.768.
Table 1
Simulation parameters.

Parameter Values

Sensor node number 500, 750, 1000

Terrain size 400�400

Radio range 14, 17 m

Initial energy charge 10 J

Transmission energy 0.001 J

Wireless bandwidth 2 Mbps

le , lq 0.128, 0.256, 0.512, 0.768
�
 The queries originate at sensors whose geographical position
follows the Zipfian distribution, i.e., some sensor generate
more queries than others.

5.2. Experimental results

As stated in previous sections, topology-control algorithms over
sensor networks try to minimize the energy consumption of nodes
by transmitting data to a subset of a node’s physical neighbors.
Therefore, given the actual node, the first step deals with the issue of
finding node’s physical neighbors. Then, topology-control algorithms
are applied in order to select the subset of logical neighbors that can
propagate messages throughout the network without any data loss,
neither involving all the effective physical neighbors.

Our experimental analysis focuses on the comparison between
algorithms EBC, GG, RNG and CC in terms of logical neighbors
found and energy consumption that is needed to propagate
messages through logical neighbors. For each algorithm, we also
analyze the impact of a change in network density on algorithm’s
performance.

Figure 1 shows the overall number of physical neighbors that
exist in the network for 500, 750 and 1000 nodes, respectively.
The increase in the number of physical neighbors is due to the
increase in the sensor transmission radius from 14 to 17 m. This
means that each sensor node can communicate with nodes that
exist in its wider vicinity. For a radius of 14 m, the number of
physical neighbors are 1298, 2640 and 4488, respectively. For a
radius of 17 m, we instead have 1958, 3984, and 6797.

Figure 2 illustrates the average number of physical neighbors
of each node in the network, for different sizes of the sensor
network. In the first case, i.e., a network with 500 nodes, the
average number of physical nodes per-sensor-node is 2.4 for a
radius of 14 m and 3.7 for a radius of 17 m. The respective
numbers for a network with 750 nodes are 3.5 (14 m radius)
and 5.3 (17 m radius). Finally, for a network with 1000 nodes,
retrieved numbers are 4.4 (14 m radius) and 6.7 (17 m radius).
Notice that in all the cases retrieved numbers are the same for all
algorithms since they are not applied to the initial step that finds
the physical neighbors of each node.

Moving the attention on the proper experimental comparison
of the four investigated topology-control algorithms (i.e., EBC, GG,
RNG and CC), Fig. 3 shows the overall number of logical neighbors
found after each algorithm has been applied to each network
setting with different sizes (500, 750 and 1000 nodes) when the
radius is set to 14 m. As shown in the figure, GG and RNG find the
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most logical neighbors, starting from 1086 and 951 nodes for the
500 nodes setting and reaching 3742 and 3145 for the 1000 nodes
setting, respectively. EBC and CC on the other hand perform
similarly but EBC finds the least amount of logical neighbors
between the two. The difference between the two sets of algo-
rithms increases as the number of sensor nodes in the network
increases. For 1000 nodes, algorithm GG found 3742 logical
neighbors, whereas algorithm EBC 1513 logical neighbors only.

Figure 4 shows the performance of the algorithms in terms of
average logical neighbors found per-sensor-node, still with a
radius equal to 14 m. As clearly follows from Fig. 4, algorithm
EBC delivers about the same average number of logical neighbors
per-sensor-node, i.e., about 1.5, irrespectively of the size of the
sensor network. On the other hand, algorithms GG and RNG do
not perform as well, since the average number of logical neigh-
bors per-sensor-node ranges from 2 up to 3.7 for GG and 1.9 to
3.1 for RNG. CC does follow the same pattern as EBC but it still
finds a smaller average of logical neighbors than EBC, at a range of
1.7–1.9.

It should be noted that, in our experimental analysis, we
overall consider two sets of algorithms that perform very differ-
ently. Algorithms GG and RNG, which belong to the first set,
expose some limitations in maintaining the number of logical
neighbors small and, as a consequence, the average number of
logical neighbors increases significantly. The main reason of this
phenomenon is that performance of algorithms GG and RNG
strongly depends on the geodesic placement of sensors.
Increasing the number of sensors in an 400 m�400 m area will
lead to an increase of physical neighbors, which, in turn, will lead
to a relatively smaller increase of logical neighbors. Also, EBC is
actually a subset of GG, hence it is reasonable for the two
algorithms to perform similarly. On the other hand, algorithms
CC and EBC, which belong to the second set, retrieve the
significance of a sensor node in a two-hop neighborhood. As a
consequence, even if the number of sensors in the terrain
increases, the average number of logical sensors in the newly
created two-hop neighborhood roughly ranges on the same
interval values.

The same experiment is performed for a radius of 17 m.
Figure 5 shows the results obtained for this setting. As shown in
the figure, when radius increases the difference between the two
algorithms’ performance is even more noticeable. In fact, the
number of logical neighbors found by algorithm GG ranges from
1639 (500 nodes) to 5648 (1000 nodes). The respective numbers
for algorithm EBC range from 1014 (500 nodes) to 2052 (1000
nodes). RNG and CC values lie in between the previous values.
Therefore, it clearly follows that EBC outperforms the other
algorithms even under this experimental analysis perspective.

Figure 6 confirms the superiority of algorithm EBC over the
rest of the algorithms in terms of the average number of logical
neighbors found per-sensor-node, still with a radius equals to
17 m. It should be noticed again that algorithm EBC remains
practically insensitive to the increase in the number of sensor
nodes and provides an average number of two logical neighbors



 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 500  600  700  800  900  1000

A
vg

. #
 o

f L
og

ic
al

 N
ei

gh
bo

rs

# of Sensor Nodes

Average Number of Logical Neighbors (17m Radius)

EBC
GG

RNG
CC

Fig. 6. Average number of logical neighbors per-sensor-node (radius¼17 m).

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 500  750  1000

Tr
an

sm
is

si
on

 E
ne

rg
y 

pe
r L

og
ic

al
 N

ei
gh

bo
r (

Jo
ul

es
)

# of Sensor Nodes

Transmission Energy (14m)

EBC
GG

RNG
CC

Fig. 7. Transmission energy consumption per-node (radius¼14 m).

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 500  750  1000

Tr
an

sm
is

si
on

 E
ne

rg
y 

pe
r L

og
ic

al
 N

ei
gh

bo
r (

Jo
ul

es
)

# of Sensor Nodes

Transmission Energy (17m)

EBC
GG

RNG
CC

Fig. 8. Transmission energy consumption per-node (radius¼17 m).

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

la
te

nc
y

event generation rate

Average Latency (500 sensors)

EBC
GG

RNG
CC

Fig. 9. Average latency per-node (500 nodes, radius¼17 m).

A. Cuzzocrea et al. / Journal of Network and Computer Applications 35 (2012) 1210–1217 1215
per-sensor-node throughout the simulation. CC performs simi-
larly but still finds more logical neighbors on average than EBC.
On the other hand, algorithms GG and RNG perform poorly with
an average number of logical neighbors found per-sensor-node
ranging from 3.1 to 5.6 for GG and 3 to 5.4 for RNG.

Similarly to the previous analysis, we again notice that the two
sets of algorithms (i.e., GG and RNG, and CC and EBC) perform
differently, with the evidence that GG and RNG are unable to
effectively and efficiently cope with the increase of the number of
sensors placed in the terrain. Contrary to this, CC and EBC focus
on the two-hop neighborhood of each sensor node which remains
fairly stable throughout the experiment.

Looking at energy consumption minimization, the main goal of
topology-control algorithms, Fig. 7 shows the energy consump-
tion per-node needed to propagate a message to logical neigh-
bors, when the radius is set to 14 m. Again, algorithm EBC
requires an almost unchanged amount of energy to this goal,
i.e., about 0.0015 J, whereas algorithm GG requires an amount of
energy ranging from 0.0020 (500 nodes) to 0.0037 (1000 nodes) J
to perform the same operation. RNG is also not effective at all at
reserving energy, just like GG, while CC performs better but not as
good as EBC.

Figure 8 shows the results for the same experiment when the
radius is set to 17 m. Even in this experimental analysis, algo-
rithm EBC outperforms the other algorithms with a transmission
energy consumption per-node equal to 0.002 J. Indeed, algorithms
GG and RNG significantly increase the energy requirement
ranging from about 0.0031 to 0.0056 J. CC provides better energy
conservation but still not better than EBC.

The high energy consumption of GG and RNG can be explained
by the fact that sensors have more logical neighbors when these
algorithms are employed. At a practical level, this means that
packets must be sent to a larger number of sensor nodes, hence
leading to significant energy consumption. On the other hand, CC
and EBC do not impose such a burden to the transmission of
packets, and, as a consequence, expose a better energy efficient.

Apart from the number of logical neighbors and the transmis-
sion energy, two other metrics that play an important role in the
evaluation of the topology-control algorithms are latency and
hit-ratio. Latency is considered to be the time passed between
issuing a query and receiving an answer to it. Obviously, the
lesser the latency the better the network response to queries. Hit-
ratio on the other hand is considered to be the ratio of answers
received over the total number of queries that were produced.

The first experiment is performed for a setting of 500 nodes
and a radius of 17 m. As shown in Fig. 9, GG and RNG perform
similarly with CC providing smaller latency values than both of
them. EBC outperforms the other algorithms, producing latency
values ranging from 81 to 90 ms. The same results occur at the
second experiment where the number of sensors inside the
network is increased to 1000. Results are shown in Fig. 10. Again,
EBC shows its superiority by producing latency values ranging
from 26 to 55 ms. Observe that the average latency is increased
when we increase the number of sensors inside the network.
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This is because collisions occur inside the network when multiple
sensors try to communicate at the same time and because it takes
longer for the record to be propagated through a denser sensor
network.

The same principle applies when we increase the number of
packets inside the network. The more packets occur, the more
(packet) collisions occur, hence packets flow throughout the network
more problematically. Another critical evidence that is related to the
previous phenomenon concerns with the number of logical neigh-
bors inside the network. When the target sensor network employs
GG or RNG as topology-control algorithm, nodes expose a signifi-
cantly larger number of logical neighbors, as shown by previous
experiments, and, as a consequence, a higher packet collision
probability is observed. Contrary to this, CC and EBC expose a fairly
stable number of logical neighbors and, as a consequence, the packet
collision probability reduces significantly.

Finally, the hit-ratio percentage metric measurements are
essential to application scenarios, such as a forest fire for
example, where the need to obtain answers to our queries is
imperative. Figure 11 shows the hit-ratio percentage obtained for
all four algorithms when the sensor network consists of 500
nodes. EBC performs the best with a lowest hit-ratio of 83% and a
highest of 94%. CC obtains the second best results, while GG and
RNG algorithms perform the worst with percentages ranging from
about 50% to 65%.

In order to measure performance in a bigger network, we
increase the number of sensor nodes to 1000 (Fig. 12). Once again,
EBC outperforms the other algorithms, even though the hit-ratio
values are decreased compared to the values obtained in the 500
nodes setting. This is because more sensor nodes exist inside the
network and therefore more collisions occur, making it difficult
for the messages to reach their destination. EBC performs at an
average of about 70% while GG, RNG and CC perform at an
average of 33%, 41% and 60%, respectively. The TTL value plays
an important role in this case, since it is decreased at each hop.
Therefore the larger the number of hops that the message travels,
the less possible it is to reach its destination. The experimental
results are thus convergent in the sense that both algorithms GG
and RNG create more logical neighbors inside the network than
CC and EBC. As a consequence, packets must flow longer distances
throughout the network, hence a higher (packet) collision prob-
ability is observed.
6. Conclusions and future work

Betweenness is a centrality measure for networks that has
been initially studied in the context of SNA. This measure states
that vertices that occur on many shortest paths between other
vertices have higher betweenness than those with lower occur-
rences. Therefore, nodes with high betweenness are selected as
nodes able to control the overall information flow within the
network. Topology control algorithms aim at providing high QoS
by maximizing network lifetime and ensuring message delivery.
Inspired by these motivations, in this paper we have proposed a
novel topology-control algorithm for sensor networks, EBC, which
exploits the edge betweenness centrality concept to ensure high
QoS throughout the network. Our scheme can be effectively
combined with load balancing techniques such as those described
in Pathak and Dutta (2010). Also, we performed a comprehensive
campaign of experiments where we compared the performance of
algorithm EBC with the performance of algorithms GG, RNG and
CC under several perspectives of analysis. Experimental results
have clearly demonstrated the superiority of algorithm EBC over
the other algorithms, in terms of logical neighbors found, energy
consumption, latency and hit-ratio.

As future work, we plan to devise alternative centrality
measures for networks, looking at the wide literature available
on the topic, and experimentally compare these novel measures
to edge betweenness centrality. Apart from number of logical
neighbors found, transmission energy consumption and scalabil-
ity, which have been investigated in this paper, in the future
experimental analysis we will focus on other interesting
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experimental parameters that need more research efforts, such as
message latency and message delivery.
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