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Content-centric publish/subscribe networking is a flexible communication model that
meets the requirements of the content distribution in the Internet, where information needs
to be addressed by semantic attributes rather than origin and destination identities. In
current implementations of publish/subscribe networks, messages are not stored and only
active subscribers receive published messages. However, in a dynamic scenario, where
users join the network at various instances, a user may be interested in content
published before its subscription time. In this paper, we introduce a mechanism that
enables storing in such networks, while maintaining the main principle of loose-coupled
and asynchronous communication. Furthermore, we propose a new storage placement
and replica assignment algorithm which differentiates classes of content based on their
popularity and minimizes the clients response latency and the overall traffic of the network.
We also present and compare two replica assignment alternatives and examine their perfor-
mance when both the locality and the popularity of users request change. The performance
of our proposed placement and replica assignment algorithm and the proposed storing
mechanism is evaluated via simulations and insights are given for future work. The
proposed mechanism is compared with mechanisms from the CDN (Content Delivery
Networks) context and performs as close as 1–15% (depending on the conducted experi-
ment) to a greedy (near optimal) approach installing up to 3 times less storage servers in
the network and providing the necessary differentiation among the classes of the content.
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1. Introduction

Publish/subscribe (pub/sub) systems (topic based or
content based) are organized as a collection of autonomous
components, namely the clients and the event dispatchers.
Clients act either as publishers, publishing new events in
the network, or as subscribers by subscribing to the classes
of events they are interested in. The event dispatchers (or
event brokers or simply brokers) on the other hand, are
responsible for collecting subscriptions and forwarding
publications to interested subscribers. In pub/sub net-
works, the selection of a message is determined entirely
by the client, which uses expressions (filters) that allow
sophisticated matching on the event content.
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In current pub/sub implementations, any event is guar-
anteed to reach all interested subscribers as long as their
subscriptions are known to the network at publish time,
assuming stable topology and no queuing overflows.
However, in a dynamic distributed environment, clients
join and leave the network over time, and it is possible that
a subscriber joins the network after the publication of an
interesting message. In current pub/sub systems, it is not
possible for a new subscriber to retrieve already published
messages that match his/her subscription. Therefore,
enabling the retrieval of past published content by means
of storing is one of the most challenging problems in
pub/sub networks.

Content delivery servers (‘‘surrogate servers’’ in CDNs or
simply ‘‘stores’’ in this work) replicate the whole content of
a given server and target to speeding up the delivery of
content by reducing the load on the origin servers and
the network itself. When a client is interested in a piece
of information of a given server, his/her request is redi-
rected to one of the existing stores (e.g., the closest one
or the one satisfying other criteria such as the load of the
candidate store). Since stores serve only a portion of the
total requests and are placed closer to the client, clients
are served faster. A client’s request is redirected to a store
only if that store is a replica of the targeted server, other-
wise the request is directed and served by the server itself.

In this work, we assume that messages are classified
according to their class (topic) and we:

� Enhance the pub/sub communication paradigm with an
advertisement and a request/response mechanism so
that stores can advertise the class of the content they
have stored and clients can retrieve it.
� Propose a new algorithm for the selection of M storage

points among the N brokers of the network (M < N)
based on: (a) the locality and the popularity of the inter-
ests for each topic, (b) the targeted replication degree of
each topic (as replication degree we name the number
of replicas kt (1 6 kt 6M) of the topic t 2 T among the
stores, which is analogous to its popularity) and (c)
the storage capacity (limitation) L of each store.
� Propose two alternative mechanisms for the assign-

ment of the replicas of each topic t 2 T among the
selected stores.
� Evaluate through simulations our design of the storing

mechanism and the new placement and replica assign-
ment algorithm.

The objective of our scheme is to minimize the total
traffic load of all the classes of content in the network sub-
ject to installing the minimum number of stores and given
that stores have storage limitations.

The rest of the paper is organized as follows. In Section
2 a brief related work on storing in pub/sub architectures is
given, followed by a description of the storage placement
problem while, in Section 3 we describe the problem under
investigation. In Section 4, we shortly describe the pub/sub
architecture and present the proposed advertisement and
request/response mechanism. The new algorithm for the
selection of the stores’ location and the replica assignment
of the content is presented in Section 5. Section 6 is de-
voted to performance evaluation via simulations. Finally,
we conclude the paper and give insights for future work
in Section 7.
2. Related work

Internet’s usage has considerably changed over the past
years from a resource sharing mechanism between a pair
of hosts to a content distribution and retrieval mechanism.
In that changing environment the pub/sub paradigm is
becoming increasingly popular for content access and
dissemination. Particularly there are several research ef-
forts that develop an overlay event notification service like
IBM’s Gryphon [1], Siena [2], Elvin [3] and REDS [4] which
implement the pub/sub architecture. Moreover, there are
also several research efforts aiming to switch from host-
oriented to content-oriented networking like CCN [5],
DONA [6], PURSUIT [7] and SAIL [8], which attempt to
name data/content instead of naming hosts in order to
achieve scalability, security and performance.

The various pub/sub models are classified according to
the semantics of the subscription language. Among the
pub/sub models the most known are the topic-based pub/
sub, which enables information consumers to register
according to a set of predefined topics organized into a
hierarchy, and the content-based pub/sub, which supports
subscriptions that follow an attribute/value scheme.

In the area of caching/storing and replication in con-
tent-centric pub/sub networks in [9] a historic data retrie-
val pub/sub system is proposed, where databases are
connected to various brokers, each associated with a topic
to store. In [9] every message is stored only once and no
placement strategies have been examined, while there is
no description of the mechanism for the retrieval of the
stored data. Moreover, in [10] we introduced an opportu-
nistic caching scheme for pub/sub networks where each
broker of the network is a potential caching point, while
a first attempt with an off-line replication algorithm in
topic-based pub/sub networks is presented in [11].

On the other hand the placement problem, in the con-
text of CDNs, is a thoroughly investigated problem. Partic-
ularly in [12,13] authors approached the placement
problem with the assumption that the underlying network
topologies are trees. This simple approach allows the
authors to develop optimal algorithms, but they consider
the problem of placing replicas for only one origin server.
The placement problem is in fact an NP-hard problem
[14], but there are a number of studies [15–20] where an
approximate solution is pursued. Their work is also known
as network location or partitioning and involves the opti-
mal placement of k service facilities in a network of N
nodes targeting the minimization of a given objective. In
some cases, it can be shown that this problem reduces to
the well known k-median problem.

More placement algorithms have been proposed in [14].
Particularly, authors formulate the problem as a combina-
torial optimization problem, prove that this is NP-hard and
develop and compare four natural heuristics algorithms.
They found that the best results are obtained with heuris-
tics that have all the stores cooperating in making the
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replication decisions. Finally, in [21] authors introduce a
framework for evaluating placement algorithms. They clas-
sify and qualitatively compare placement algorithms using
a generic set of primitives that capture several objective
and near optimal solutions. While most models have a sim-
ilar cost function (optimize bandwidth and/or storage
usage costs for a given request pattern), less attention
has been given to network-wide constraints (limited stor-
age capacity of the stores).
3. Problem description

In our work, we assume a content-centric pub/sub net-
work with arbitrary topology of N nodes. T different topics
should be stored at M stores, where each store has the
capability to store L topics. Each topic t 2 T should be
replicated kt times. Requests for the topics are generated
at various nodes and they trigger the transfer of the re-
quested item from a store to the node where the request
was generated. The proposed mechanism is composed by
two phases, typical in any network management task,
namely the Planning and the Assignment phase. In the Plan-
ning phase, the proposed mechanism selects M points out
of the N nodes of the network to place the stores, while
in the Assignment phase, each topic t is assigned at exactly
kt different stores with the target to minimize the total
traffic load in the network.

Generally, in a real content delivery pub/sub network
the Planning of stores changes rarely, since it requires the
reallocation of the stores among the network nodes. On
the other hand, the Assignment of the topics is more flexible
and the CDN provider is able to reassign the topics among
the stores when the locality and the popularity patterns
change is such a way that the performance of the network
is degraded with the existing configuration. Of course, a
reassignment requires the calculation of the new places
for each topic and the transfer of topics to those locations,
but as shown later in the performance analysis, it is an effi-
cient way to maintain the performance of the system at
high levels without re-planning the whole CDN network.

The storage capacity of each replication server usually
refers to TBytes but for simplicity we assume here that
the number of messages is the same for each topic and
messages are of the same size, leaving for future work the
case of different sizes. Alternatively, at each snapshot of
the system in the network, there exists the same number
of messages for each topic. The L parameter is a limitation
introduced by the storage providers and refers to the max-
imum storing capability of each store in the network. On
the other hand, the kt parameter (replication degree of each
topic) is a limitation introduced by the storage provider and
refers to the number of replicas that the content provider is
willing to pay for. Finally, the M parameter refers to the
number of stores that a storage provider should install in
the network to serve the storage demands of the topics.
4. Enabling storing in pub/sub networks

In this work, we consider a pub/sub network which uses
the subscription forwarding routing strategy [2], where the
routing paths for the published messages are set by the
subscriptions, which are propagated throughout the net-
work so as to form a tree that connects the subscribers to
all the brokers in the network. In that scheme, publishers
join the network when they have something to publish,
therefore in our approach the entity of the origin server
does not exist.

In a pub/sub network, when a client issues a subscrip-
tion, a message containing the subscription filter is sent
to the broker the client is attached to. The filter is inserted
in a Subscription Table (ST), together with the identifier of
the subscriber. Then, the subscription is propagated by the
broker, which now behaves as a subscriber with respect to
the rest of the dispatching network, to all of its neighboring
brokers. In turn, the neighbors record the subscription and
re-propagate it towards all further neighboring brokers,
except for the one that sent it. Finally, each broker in the
network has a ST, in which for every neighboring broker
there is an associated set of filters containing the subscrip-
tions issued by them.

4.1. Advertisement and request/response mechanism

In this section, we present the advertisement and the
request/response mechanism, which provides a pub/sub
system with the ability to store and retrieve information
published in the past and make it available for future cli-
ents. Particularly, we will present the new mechanisms
through the example of Figs. 1 and 2.

In order to retrieve stored information, we enhance the
system with three additional types of messages (besides
the already existing Publish () and Subscribe ()),
Advertise (), Request () and Response (). We also
add to the system a new feature calledAdvertisementTa-
ble (AT), similar to ST, which is used to store advertise-
ments. When a new store ‘‘str1’’ is installed at broker 6
(Fig. 1), it issues a Subscribe () message with the topics
(class of events) that is willing to store (top_a and top_b in
the given example). In that way, it acts as a client to future
publications matching the subscribed topics and, each time
a relevant publication occurs (i.e. publisher attached to bro-
ker 1 publishes message msg_a matching top_a), it stores the
message (the message is also stored to ‘‘str2’’). The ‘‘str1’’
also issues an Advertise () message, which contains the
topics that stores and the distance in hops from the store
(the distance attribute is built hop by hop). Advertisements
are treated similarly to subscriptions and form a tree that
connects the ‘‘str1’’ to all the brokers in the network. Adver-
tisements are inserted in the (AT). Coverage also occurs with
advertisements, as with subscriptions, but in a slightly dif-
ferent way. Particularly, when a broker receives an adver-
tisement, checks in the distance field and if the distance is
equal to another entry (for the same topics), it adds the
advertisement to theAT and stops forwarding the advertise-
ment. Keeping more than one entry for the same topic in an
AT, enables load balancing capabilities to requests passing
from that particular broker. On the other hand, when a bro-
ker receives an advertisement for a store which is closer
compared to the other stores already in the AT, it adds the
advertisement to the AT, removes the previous entries and
forwards it further (brokers 5 and 6 in Fig. 1). Finally, when



Fig. 1. Advertising and Storing of information (in red are the new entries of STs and ATs created by the installation of the ‘‘str1’’). Publisher at broker 1
publishes a message msg_a that matches top_a and is stored at ‘‘str1’’ and ‘‘str2’’. ‘‘2:top_a,1’’ in AT means that any request for topic a should be forwarded to
broker 2 and the closest store for topic a is 1 hop away. ‘‘2:top_a’’ in ST means that any publication matching topic a should be forwarded to broker 2. (For
interpretation of color mentioned in this figure the reader is referred to the web version of the article.)

Fig. 2. Retrieval of stored information using the request/response mechanism (in red are the new entries of STs created by the subscription of client A). (For
interpretation of color mentioned in this figure the reader is referred to the web version of the article.)
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a broker receives an advertisement for a store which is fur-
ther compared to the other stores already in theAT, it simply
stops the forwarding of the advertisement without chang-
ing the entries of the AT (broker 3 in Fig. 1).
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When a client (client A in Fig. 2), is interested in retriev-
ing stored content apart from subscribing (if he/she is also
interested for future publications) he/she issues a request
by sending a Request () message containing the inter-
ested filter (fltr_a). Filters contains, apart from the topic
that the client is interested in, more attributes to enable
sophisticated matching. Source routing is used for the
forwarding of the Request () (the path is being built
hop by hop and is included in the Request () header).
Broker 4 upon receiving the Request () message checks
in its (AT) for entries matching the requested topic (top_a
in this case). The broker forwards the Request () mes-
sage to the broker who had advertised the matching topic
and is closer to the client (in this example broker 3 and
finally broker 2). Finally, ‘‘str2’’ receives the Request ()

message, matches its stored content with the whole filter
(not just the topic) and initiates a Response () message
for each match (messages msg_a in Fig. 2).

A Response () message carries a stored message as
well as the sequence of nodes carried by the initiating
Request () message (source routing). When a broker
receives a Response () message it pops off its identifier
from that sequence and forwards it to the first broker of
the remaining sequence. In the end, client A will receive
every stored message matching his/her request.

5. Placement and replica assignment strategy

We use as the base of our placement and replica assign-
ment scheme, algorithms presented in the context of CDN
networks. Particularly in [14,15], authors developed several
placement algorithms that use workload information, such
as latency (distance from the storage points) and request
rates, to make the placement decision. Their main conclu-
sion is that the so called ‘‘greedy’’ algorithm that places
stores based upon both a distance metric and request load,
performs the best and is very close to the optimal solution.

5.1. Greedy algorithm

Here, we briefly present the greedy algorithm assum-
ing that there exists only one class of content in our sys-
tem (one topic), or equivalently there is no distinction in
the content. We let ri be the demand (in reqs/s) from cli-
ents attached to node i. We also let pij be the percentage
of the overall request demand accessing the target server
j (traditional placement algorithms replicate a specific
origin server) that passes through node i. Also we denote
the propagation delay (hops) from node i to the target
server j as dij. If a store is placed at node i we define
the Gain to be gij = pij � dij. This means that pij percentage
of the traffic would not need to traverse the distance
from node i to server j decreasing the overall network
traffic by:

dij �
XN

l¼1

Rl;

where

Rl ¼
rl if i is on the path from l to j;

0 otherwise:

�

The greedy algorithm chooses one store at a time (we
need k stores out of the N nodes of the network). In the first
round, it evaluates each of the N nodes to determine its
suitability to become a store (replication point of server
j). It computes the Gain associated with each node and
selects the one that maximizes the Gain. In the second
round, searches for a second store which, in conjunction
with the store already picked, yields the highest Gain.
The greedy algorithm iterates until k stores have been
chosen to replicate server j.

5.2. Modified greedy algorithm

In the pub/sub network architecture that we assume in
this paper, the notion of an origin server – which is vital for
the greedy algorithm – does not exist. Publishers join the
network, publish their content and disappear. So in order
to obtain the location of the stores we modify the greedy
algorithm. Particularly we repeat the above procedure N
times assuming each time that the targeted server j is a dif-
ferent node (broker) of the network. We get in that way N
vectors of k possible stores. Precisely, each vector has N
elements with k ones in the index of the selected stores
and N � k zeros in every other place. For example, vector
[0 0 0 1 0 1] means that of the 6 nodes of the network
the selected k = 2 possible stores are nodes 4 and 6. Finally,
we select as our stores those k nodes that appeared more
times in the per element summation of the N vectors and
install at each one a store following the mechanism
described in Section 4.1. The modified greedy algorithm
presented here assumes uniform distribution of the proba-
bility among the N nodes of the network that publications
could occur. Of course other forms of probability distribu-
tions could be used, and each vector should be first
weighted with its probability before the per element
summation of the N vectors.

5.3. Placement and replica assignment algorithm for pub/sub
networks

Here, we use the modified greedy algorithm described
above for the case where in our network exist T different
classes of content (topics). Next, we present the Steps of
the proposed algorithm side by side with the example of
Fig. 3 (Table 1 contains all the useful parameters required
by the proposed algorithm):

1. For each topic t 2 T we execute the modified greedy
algorithm presented in Section 5.2 and we get T vector
of possible stores st. Regarding the example we get:
sa = [0 3 5 0 2 2]
sb = [0 2 5 0 5 0]
sc = [0 2 5 0 5 0]

for the three topics accordingly. The [0 3 5 0 2 2] means
that out of the N = 6 executions of the modified greedy
algorithm, node 2 appeared 3 times, node 3 appeared 5
times and so on.

2. Each vector (st) is weighted by wt ¼
PN

i¼1
rt

iPN

i¼1

PT

t¼1
rt

i

. wt

shows the significance (popularity) regarding the traffic
demand of each topic in the network. The weights for



Fig. 3. Topology and workload information (requests/s) per each class of
content (T = 3 topics) together with, kt = k = 2, L = 2 and M = 3 form the
inputs of the placement algorithm for the pub/sub network.

Table 1
Parameters used by the placement algorithm and its
assignment alternatives.

rt
i : request rate for topic t 2 T in broker i

N : number of nodes (brokers) in the network
M : (M < N) number of stores in the network
kt : (kt 6M) replication of each topic t 2 T in

the network
L : storage capacity of each store in the

network
T : number of classes of content (topics)
wt : weight of topic t 2 T in the network
S : storage brokers vector
st : possible stores vector for topic t 2 T
nt : relative weight of topic t 2 T
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the given example are:
wa = 17/50 = 0.34, wb = 27/50 = 0.54, wc = 6/50 = 0.12
We obtain the following weighted vectors.
wa � sa = [0 1.02 1.7 0 0.68 0.68]
wb � sb = [0 1.08 2.7 0 2.7 0]
wc � sc = [0 0.24 0.6 0 0.6 0].

3. We select as our stores those M nodes that appeared
more times in the per element weighted summation
of the T vectors. We call that vector the storage brokers
vector S. The per element summation of the above three
vectors into a single vector gives [0 2.34 5 0 3.98 0.68]
meaning that the final M = 3 stores in S are nodes 3, 5
and 2.

4. For each topic t, starting from the most significant
(based on the weight), we assign kt stores following
the procedure below:
� For each entry in the st of topic t calculated in step 1

assign a store if that entry also appears in the S,
calculated in step 3, and only if in that store has been
assigned less than L (storage capacity) topics until
we get kt stores (replication of topic t).

In the example starting from topic b then topic a and
finally topic c (based on their weights) we assign them to
k = 2 stores. Topic b is assigned to nodes 3 and 5 which
were the nodes for topic b appeared more times in Step
1. Topic a is also assigned to nodes that were produced
by Step 1, nodes 2 and 3, while topic c is assigned to nodes
2 and 5. Node 5 was among the most popular selections
produced by Step 1 while node 2 was the only store in S
with less than L = 2 assignments.

Step 4 of our algorithm is also known as the Generalized
assignment problem which even in its simplest form is
reduced to the NP-complete multiple knapsack problem.
In this paper, for the solution of the assignment problem
we used the heuristic approaches described above and in
Section 5.5, while more approaches could be found in liter-
ature [22].

5.4. Cost model

Steps 1–3 of the proposed algorithm described above
comprise the Planning phase of the algorithm while Step
4 is the Assignment phase. In this section, we present the
cost model of the Assignment phase, which as mentioned
above is an NP-complete problem. The access of an infor-
mation item stored in store x by node y generates a traffic
load equal to the length (number of hops) of the path from
x to y. Given that we wish to optimize the total traffic load,
the access scheme is that we always access the closest
store (shortest path) among those holding the specific
item. Thus given the access mechanism, we seek to decide
the replica assignment of each topic.

Let C be the traffic load corresponding to any storage
configuration.

For that storage configuration we can write:

C ¼
XT

t¼1

Ct ; ð1Þ

where Ct is the traffic load corresponding to configuration
of topic t only.

We then have,

Ct ¼
Xkt

n¼1

X
l2N t

n

rt
l � dln; ð2Þ

where N t
n is the collection of nodes accessing item t from

its replication point at node n; rt
l is the request rate for

topic t from node l and dln is the distance (in hops) from
node l to node n.

And for the overall network traffic from Eqs. (1) and (2),
we get:

C ¼
XT

t¼1

Ct ¼
XT

t¼1

Xkt

n¼1

X
l2N t

n

rt
l � dln: ð3Þ

The minimization of the overall traffic cost is given by
the minimization of the following constrained nonlinear
multivariable function.

min ðCðk1; k2; . . . ; ktÞÞ such that;
PT
t¼1

kt 6 L �M;

1 6 kt 6 M; 8t 2 T:

8><
>:

ð4Þ
5.5. Alternatives on the assignment phase

In this section we describe an alternative assignment
mechanism which is similar to the Weighted Round Robin
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(WRR) scheduling discipline. In Section 5.3 topics were
assigned sequentially based on their weights. Particularly,
the topic with the largest weight was assigned first, then
the topic with the second largest weight and so on. In
the WRR alternative the sequence of the assignment does
not change but the number of storing points that each
topic is assigned to is based on its relative weight. The rel-

ative weight nt of topic t is nt ¼
PN

i¼1
rt

i

min t2Tf g
PN

i¼1
rt

i

� �� �
. This

means that the n of the less weighted topic is equal to
one. The n of all topics generate an integer vector of the
form [n1,n2, . . . ,nt] where n1 is the relative weight of topic
1 and so on (e.g. [3 1 2 2] means that out of the four topics,
topic 2 is the the one with the smallest weight while topics
3 and 4 are twice as large as topic 2 and topic 1 is the larg-
est and its weight is three times larger than topic 2). The
WRR alternative of the assignment procedure assigns at
each round r

kr
t ¼min nt � kt; kt �

Xr�1

r0¼0

kr0

t

( )
;

where

k0
t ¼ 0; 8t 2 T

stores to each topic until all topics are assigned to kt differ-
ent stores.

In the example of Fig. 3, the vector of the relative weight
of the topics is [3 5 1]. Of course the assignment procedure
of WRR alternative in that example is the same to the
assignment procedure described in Section 5.3 since
kt = k = 2 but in the case that k = 6 then the assignment of
WRR would have been:

Round 1: [3 5 1] stores for each topic.
Round 2: [3 1 1] (topic 2 has already been assigned to 5

stores)
Round 3: [0 0 4] (topic 1 and 2 have been assigned to

k = 6 stores).

The WRR alternative is fairer to the less weighted topics
and as shown in the performance evaluation this lead to
better performance regarding the clients’ perceived delay
and the overall network traffic.
6. Performance evaluation

In this section, we evaluate the proposed storing mech-
anism using a discrete event simulator. The simulator is
written in MATLAB based on the event-driven technique
for continuous-time modeling. Before implementing the
modified greedy algorithm and the two alternative assign-
ment algorithms we made sure that the implemented
greedy algorithm is inline with the algorithms presented
in [14,15] (the performance of our greedy implementation
is inline with the plots of those two greedy implementa-
tions). N brokers are organized in a tree topology (common
topology in overlay pub/sub networks) and clients dynam-
ically request on each broker i for stored content with rate
rt

i different for each topic t. We assume that in our network
exist T topics and based on the set of experiments each
topic should be either replicated at least minkt times or a
predefined number of M stores should be placed and
appropriately assigned to the topics. Also, each store has
a capacity of L different topics. For the purpose of this pa-
per, we assume that there are no limits in the workload (in
requests/s) that each store can serve. Finally, the assign-
ment of replicas to the topics is based on their actual
weight wt with the constraint that at least minkt replicas
should be assigned to each topic t.

It is widely acknowledged that content-centric pub/sub
research lacks public data sets for meaningful evaluation.
Thus, synthetic workload generation is widely accepted in
the field, under the assumption that the workload generated
meets a set of realistic assumptions. Each topic is character-
ized by two parameters: popularity and locality. Popularity
refers to the request rate related to a topic and locality to
the region of the topology likely to originate requests. pt

(respectively lt) denotes the popularity (respectively the
locality) associated to a topic t. Popularity and locality val-
ues are computed using a Zipf law of different exponents
sp and sl respectively. Requests are issued from a set of nodes
computed using lt. Particularly dlt � Ne brokers are potential
issuers of requests related to topic t. This set of brokers is
computed by choosing a random central node and d
lt � Ne � 1 additional nodes among the closest nodes to the
central node (executing a Breadth First Search algorithm).

Having selected the M stores and assigned to them the T
topics using our two assignment alternatives (‘‘p/s_seq’’ for
the sequential assignment mechanism and ‘‘p/s_wrr’’ for
the weighted round robin-like assignment mechanism)
we let the system operate under the dynamic client envi-
ronment. We compare it firstly to the case where each
topic is assigned to the kt stores produced by the first Step
of the placement algorithm (‘‘grd_opt’’) described in Section
5.3 disregarding of the storage capacity and the total num-
ber M of used stores, and secondly to the case where there is
no differentiation among topics during the selection of the
M stores and the final assignment of the topics to kt stores is
random (‘‘rnd’’). The metrics we are interested in are:

� The overall network traffic, ONT (in req � hops/sec) after
the completion of the placement/replication algorithm.
� The mean hop distance which corresponds to the mean

number of hops between a responding store and the
client making the request. This metric is indicative of
the response latency as a function of hops in the
network.

The above metrics are random variables and we esti-
mate their mean by simulating thousands of observations.
We made two sets of experiments; one evaluating both the
planning and the assignment phases (see Section 5.4) of
the proposed algorithm and one evaluating only the reas-
signment of topics after an initial planning.

6.1. Overall evaluation of the placement and replica
assignment algorithm

In the first set of experiments we conducted two sub-
sets of experiments one assuming a predefined minimum



Fig. 4. Performance of the proposed placement algorithm (both assign-
ment alternatives ‘‘seq’’ and ‘‘wrr’’) compared to the ‘‘grd_opt’’ and the
‘‘rnd’’ vs. the number of the brokers in the network.

Fig. 5. Performance of the proposed placement algorithm (both assign-
ment alternatives ‘‘seq’’ and ‘‘wrr’’) compared to the ‘‘grd_opt’’ and the
‘‘rnd’’ vs. the storage capacity of the stores in the network.
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replication degree for each topic and one assuming a pre-
defined number of stores that should be installed in the
network.

6.1.1. Predefined minimum replication degree
In this subset of experiments, we assumed that the

Zipf’s exponent value of the popularity is sp = 1 while we
assumed uniform locality among the topics. Uniform local-
ity implies that requests are generated from every node in
the network for every topic or else, the neighborhood of
interest for each topic is the whole network. We also
assumed that minkt = mink = 2 (minimum replication
degree). We mentioned above that the assignment is
weighted based on the wt of each topic, meaning that the
number of replicas of each topic is given by
kt ¼ wt

wt0
�mink

l m
where t0 2 T is the less weighted topic. Also

in our network exist T = 10 different topics and the clients’
request rate per topic t is 25 � pt requests/s from each
broker of the network. We particularly made three differ-
ent experiments, one varying the number of brokers in
the network, one varying the storage capacity of each
potential store and one varying the minimum replication
degree mink of the topics in the network.

Figs. 4–6 show the mean hop distance and the overall
network traffic for each one of the three different experi-
ments. The proposed algorithm behaves better than the
‘‘rnd’’ algorithm (5%–25% better performance) and close
to the ‘‘grd_opt’’ (less than 10% worse), which does not
have any constraints regarding the storage capacity and
the total number of installed stores. This performance is
achieved regardless of the size of the network, the capacity
of the stores or the minimum number of replicas installed
for each topic. The mean hop distance and the ONT in-
crease sublinearly with the size of the network (Fig. 4)
while increasing the L of every store the two proposed
alternatives and the ‘‘rnd’’ algorithms install more topics
in ‘‘privileged’’ brokers leading to smaller response delays
(and loading with less traffic the network) for every
request (Fig. 5). Moreover, both the mean hop distance
and the ONT decrease as the minimum replication degree
(mink) for each topic increases, since now requests reach
closer stores (Fig. 6).

The ‘‘wrr’’ assignment alternative behaves better than
the ‘‘seq’’, (4%–17% better performance in every conducted
experiment), since as explained in Section 5.5 this alterna-
tive results in a fairer assignment of the topics. This means
that less popular topics still have the chance to select stores
that match their choices (Step 1 of the proposed algorithm)
leading to better performance for the whole network. As
observed by Figs. 5 and 6, the mean hop distance and the
ONT graphs have the same form since the storage capacity
of each store and the minimum replication degree of each
topic does not alter the overall amount of traffic (req/s) gen-
erated in the network, and the ONT is the product of the dis-
tance (from a client to the closest store) and the amount of
requests generated by the clients of the network. Of course,
the addition of new brokers (and new clients attached to
them) increases the amount of traffic in the network and



Fig. 6. Performance of the proposed placement algorithm (both assign-
ment alternatives ‘‘seq’’ and ‘‘wrr’’) compared to the ‘‘grd_opt’’ and the
‘‘rnd’’ vs. the minimum replication degree of the topics in the network.

Fig. 7. Performance of the proposed placement algorithm (both assign-
ment alternatives ‘‘seq’’ and ‘‘wrr’’) compared to the ‘‘grd_opt’’ and the
‘‘rnd’’ vs. the exponent value sp of the popularity.
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the mean distance between clients and stores; that’s why
the ONT graph in Fig. 4 behaves differently from the mean
hop distance graph.

6.1.2. Predefined total number of stores
In this subset, we set two different experiments, one

assuming uniform locality and vary the exponent sp of
the popularity and one assuming uniform popularity
(sp = 0,pt = p = 0.1 when T = 10; uniform popularity means
same request rate for each topic equal to 2.5 req/s) and
vary the exponent sl of the locality. Moreover we assumed
that there are M = 20 and M = 10 available stores (L = 5 for
each store) that should be placed and assigned (based on
the weights) to the T = 10 topics when the network is
composed by N = 100 nodes.

Figs. 7-8 show the mean hop distance and the overall
network traffic for each one of the two experiments. As
previously, the proposed algorithm behaves better than
the ‘‘rnd’’ algorithm and close to the ‘‘grd_opt’’ when the
popularity exponent changes. Particularly the proposed
algorithm performs 10%–25% better than the random algo-
rithm and less than 9% worse than the greedy optimal
algorithm, which has no limitations in the number of
installed stores and their storage constraints. On the other
hand, in the experiment where we change the locality
exponent, the proposed algorithm performs four times
worse than the ‘‘grd_opt’’ but requires three times less
stores. So when the offered stores are predefined, and the
‘‘grd_opt’’ cannot be used, the proposed algorithm (both
the assignment alternatives) performs significantly well.
As previously, the mean hop distance and the ONT
graphs have the same form since both the popularity and
the locality exponent do not alter the overall amount of
traffic (req/s) generated in the network but only the way
that this amount of traffic is allocated among the topics
and the nodes of the network. For that reason the ONT
graph is not depicted in the following experiments.

We have also conducted an experiment (Fig. 9; each
point is the average of twenty different runs/different
combinations of storage failures) assuming storage failures
when locality is uniform and the the exponent sp of the
popularity is sp = 0.8. Despite the fact that the proposed
planning algorithm and the two assignment alternatives
are not designed to take into consideration the possibility
of failure of each store during the selection of the stores,
we observe a linear increase in the mean hop distance when
storage failures occur. Particularly we observe up to 11% in-
crease in the mean hop distance when 25% of the stores fail
(fail to serve requests). In the case of a failure of a store a
request will be served from the nearest online store, so
the observed increase in the mean hop distance is the
distance between the new serving store and the one that
failed.

6.2. Evaluation of the reassignment phase

In this set of experiments, we evaluate only the reas-
signment phase of the proposed algorithm (Step 4 in
Section 5.3) after an initial planning and assignment of



Fig. 8. Performance and total number of installed stores in the network of
the proposed placement algorithm (both assignment alternatives ‘‘seq’’
and ‘‘wrr’’) compared to the ‘‘grd_opt’’ and the ‘‘rnd’’ vs. the exponent
value sl of the locality.

Fig. 9. Performance of the proposed placement algorithm (both assign-
ment alternatives ‘‘seq’’ and ‘‘wrr’’) compared to the ‘‘rnd’’ vs. the number
of storage failures.

Fig. 10. Performance and % gain of the assignment phase (both alterna-
tives ‘‘seq’’ and ‘‘wrr’’) of the placement algorithm after an initial planning
compared to the placement algorithm without reassignment vs. the
evolution of the value of the popularity exponent.
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the stores. Particularly, we made two different experi-
ments. In the first one, we assumed uniform locality and
vary the popularity when the initial planning was done
assuming sp = �1 (the last topic is the most popular). In
the second experiment we assumed uniform popularity
and vary the locality when the initial planning was done
assuming sl = �1 (the last topic was requested from the
largest neighborhood). Also there are M = 20 available
stores (L = 5 for each store) that should be placed and
assigned (based on the weights) to the T = 10 topics while
the network is composed by N = 100 nodes.

Figs. 10 and 11 present the mean hop distance and the
relative gain of the reassignment process for the two
proposed assignment alternatives. It is obvious that the
reassignment of topics manages to retain the good perfor-
mance of the network even if the popularity or the locality
pattern changes radically. Particularly, when the patterns
of the popularity and the locality are inverted the re-
assignment phase by itself delivers up to a 55% decrease
in the mean hop distance compared to the case where
the assignment of the topics among the stores do not
change after the initial planning. Moreover the perfor-



Fig. 11. Performance and % gain of the assignment phase (both alterna-
tives ‘‘seq’’ and ‘‘wrr’’) of the placement algorithm after an initial planning
compared to the placement algorithm without reassignment vs. the
evolution of the value of the locality exponent.
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mance of the reassignment phase is less than 8% worse
compared to the performance of executing both the plan-
ning and the assignment steps after the change of the
popularity and the locality pattern (Figs. 7 and 8).

The relative gain graphs of Figs. 10 and 11 could also be
used as a benchmark for the storage provider in his deci-
sion to reassign or not the topics in the stores of the
network upon the detection of a change in the popularity
or the locality pattern. Particularly, when the popularity
pattern (the exponent value sp) changes up to 50% from
its initial value the reassignment of the topics has less that
10% impact in the decrease of the mean hop distance and
the ONT. This means that a storage provider could skip
the reassignment of the topics since the initial planning
and assignment still performs quite well. On the other
hand, when the locality pattern changes more than 25%
from its initial value the reassignment phase is necessary
since it can decrease both the mean hop distance and the
ONT at least 15%.
6.3. Discussion

From the above performance analysis we observe that
the performance of the proposed algorithms (planning
and the two assignment algorithms) is at any case up to
25% better than the ‘‘rnd’’ even in the cases where the
mean hop distance is less than 3 hops. Of course the pro-
posed algorithms behave worse than the ‘‘grd_opt’’ which
has no limitations in the number of the installed stores.
Particularly, the proposed algorithms perform very close
to the ‘‘grd_opt’’ in the majority of the conducted experi-
ments (1%–15% worse). Only in the case where we change
the locality exponent the proposed algorithms behave up
to four times worse than the greedy installing on the other
hand three times less stores. This implies that in the real
world, where a storage provider has limitations in the
number of stores that can install, the use of the proposed
algorithms is an appropriate solution in almost any
scenario.
7. Conclusion and future work

In this paper, we put forward a new mechanism for
storing in content-centric pub/sub networks. The proposed
concept equips the pub/sub with the ability to store and
retrieve stored information. Moreover, we presented a
new placement and replica assignment algorithm that dif-
ferentiates classes of content. Evaluation via simulations of
the performance of the system regarding the clients’ re-
sponse latency and the overall network traffic shows that
our placement and replica assignment algorithm is a
promising solution in almost any scenario. Finally, the
two proposed assignment alternatives could also be used
regardless of the initial planning of the stores to retain
good performance of the network when both the popular-
ity and the locality of the requests change. This work can
be extended in many ways such as optimizing different
objectives to serve different QoS metrics and SLAs among
the storage providers and the content providers.
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