
Chapter 32
Detecting Influential Nodes in Complex
Networks with Range Probabilistic Control
Centrality

Dimitrios Katsaros and Pavlos Basaras

32.1 Introduction and Motivation

Real-world entities often interconnect with each other through explicit or implicit
relationships, by transient and continuous ways to form a complex network. Such
networks are studied inmany fields of science like bioinformatics, statisticalmechan-
ics, sociology, and computer science [1]. Complex networks have provided a wealth
of evidence for their ability to disseminate information rapidly among other node
users [2]. Rumors and fashion, but also social unrest or the spreading of infectious
diseases among those people networks, highlight the need for identifying those enti-
ties to either boost or hinder spreading. A great deal of research into the structure
of complex systems has focused on trying to identify such entities in an attempt
to efficiently control complex systems. For the identification of such entities, tradi-
tional centrality measures have been proposed such as the shortest-path betweenness
centrality or spectral centrality measures, e.g., PageRank [3]. More sophisticated
methods for the detection of influentials are reported in [4, 5]

The common characteristic of the aforementioned efforts is that they all deal
with static complex networks, i.e., they apply for a specific instance of the network’s
lifetime; at that specific instance, a link between a specific pair of nodes either exists or
not. However, many of the real-world complex networks are continuously evolving,
and their links rapidly appear and disappear. Examples of such complex systems are
vehicular ad hoc networks [6] whose links live for only a few seconds and are usually
characterized by a link quality parameter, ranging from a zero value indicating an
absent link, to a value of one, indicating a perfect communication link. Moreover,
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many evolving complex networks are examined from an ‘aggregated’ perspective,
associating to each link the percentage of time that this link existed.

The study of influentials in complex networks with probabilistic links is a chal-
lenging, new task, because apart from the ‘neighborhoods’ that an influential can
exert influence, we should also take into account the ‘strength’ of the links. We could
resort to the old ideas finding stochastic shortest paths and computing analogous
betweenness centralities, but these centralities have already been shown that they do
not perform well for static networks either [5].

In this article, we develop a semi-local centrality measure for dynamic, complex
networks with probabilistic links, the range probabilistic control centrality (RPCC),
which considers both the ‘strength’ of links emanating from each node, and it addi-
tionally estimates the influence region of the node based on ideas from the literature
of control theory. In the absence of relevant methods, the proposed centrality mea-
sure is compared against a baseline method, namely the localized weighted-degree
centrality [7], for a couple of networks with various distributions for the probabilities
of the links.

32.2 Utility Examples

Consider the vehicular ad hoc network (VANET) where the existence and quality of
connections between vehicles (e.g., time of active connection, signal strength) is a
factor of several parameters such as the vehicle’s direction, acceleration–deceleration
of vehicles, the underlying road network topology, possible obstacles or interference,
and so on. The aggregate effect of these factors results in having a temporal network.
A vital operation in a VANET is that of locating the nodes that can disseminate a
safety message to as many vehicles as possible within the whole network or focused
parts of it, e.g., safety geocasting messages.

Apart from these ad hoc communication networks, a wide variety of complex
systems in nature, society, and technology can be represented as graphs with entities
linked by probabilistic edges. A couple of other examples include a transportation or
airline network [8], where schedules of transportations vary or change, and examples
of phone, email, or social networks, depicting contacts as entities and the amount
of time of their interaction as their links strength [9], and we need to determine
the entities that can exert the maximum influence over the network. Earlier works
such as betweenness centralities based on stochastic shortest paths suffer from the
inability to detect influential spreaders [5]. Recent efforts using positive and negative
links [10] are not rich enough to address the present problem.

The present article investigates the issue of detecting influential nodes in temporal
networks with probabilistic links and makes the following contributions:

• Investigates the issue of influential spreaders in complex networks with proba-
bilistic links.
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• Extends the concept of control centrality [11] and proposes an adjustable central-
ity measure, the range probabilistic control centrality (RPCC), based on control
theory, to help identify such nodes.

• Evaluates this centrality measure across a range of complex networks and distri-
butions of probabilities over the links, and compares it with a baseline method,
namely weighted-degree centrality [7].

32.3 Range Probabilistic Control Centrality

The concept of control centrality was introduced in [11] based on the work of [12].
Their motivation was to detect the nodes of the network that can control a directed
network, i.e., to drive, based on specific inputs, the ‘controlled’ nodes to the state
required by the control goal. They described the notion of a stem, which is a directed
path starting from an initial node, such that no nodes appear more than once along the
path, e.g., j → k → l → m. A stem-cycle disjoint subgraph of G is the subgraph
of G consisting of stems and cycles with no common nodes. The control centrality
of a node is defined as the largest number of edges among all possible stem-cycle
disjoint subgraphs.

Whereas their definition of centrality is very interesting from a control-theoretic
perspective, our needs for addressing the requirements of all the aforementioned
application fields demand two major reconsiderations. The first one concerns the
fact that our links are probabilistic, and this must be incorporated in the definition
of a control-theoretic type of centrality. Additionally, it does not make sense, for a
VANET for instance, to demand from a single vehicle to be able to ‘control’ the
whole ad hoc network; we need to redefine the centrality measure in a way that it can
be defined for both the entire network, and for neighborhoods around each node.

Following on these requirements, we define the generic concept of stem signifi-
cance (ssf), as the product of two scalar terms:

: sf = sizeOfStem x weight OfStem (32.1)

where sizeOfStem is the number of edges of the stem and weightOfStem is the
product of its weights.

Based on this, we build two approaches for defining centrality measures over
probabilistic graphs for range-limited neighborhoods. In the first approach, we adjust
appropriately the ideas of [11], but in the second approach, we depart significantly
from them and rely on the graph-theoretic concept of the influence range of a node,
which is defined as the set of nodes reachable from a specific node.
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32.3.1 RPCC with Cycle Extraction (RPCCCE)

In our fist attempt to identify the most influential users following the idea of stem-
cycle disjoint subgraphs, we denote the cycle significance, csf, in a similar way as
ssf :

csf = cyclePointer ∗ weightOfCycle ∗ (sizeOfCycle + 1) (32.2)

where cyclePointer is the weight of the edge through which we visit a node of the
cycle, weightOfCycle is the product of the weights of the edges that form it and
sizeOfCycle is the number of its edges.

We compute the k-RPCC of a node i as the sum of the significances of the disjoint
stems and cycles within the k-specified range. The pseudocode for the algorithm is
as follows:

Step 1: Remove all incoming links of node i .
Step 2: Perform the Cycle Extraction procedure.
Step 3: Calculate and sum: cycle significances.
Step 4: Calculate and sum: stem significances of the remaining graph.
Step 5: Sum results of Steps 4 and 5.

For n = 1, this method is identical to the weighted-degree centrality. For n = 2, we
exclude Steps 2 and 3, since there can be no cycles within such range. For n ≥ 3,
the computation is as given. The procedure Cycle Extraction is described in the next
paragraphs.

32.3.1.1 Cycle Extraction

In each step, one cycle is removed from the graph. The first identified cycle becomes
a candidate for extraction. Cycle Weight is the average sum of the weights of the
cycle and Cycle Size i the number of edges that form it. When multiple cycles exist,
the criteria to change candidates are as follows:

1. CycleWeight > CandCycleWeight and CycleSize/CandCycleSize > 0.7
2. CycleSize > CandCycleSize and CycleWeight/CandCycleWeight > 0.7.

CandCycleWeight and CandCycleSize denote the characteristics of the previous
cycle candidate, and CycleWeight and CycleSize are the characteristics of the newly
found one. The first criterion is to prevent small-sized cycles with high weights to be
chosen over larger ones with high-quality links, due to their small number of edges.
We use the second criterion to account for cases where the significance of a newly
found cycle might be lower than that of the candidates, but if its number of edges is
greater, and their significances are not far off (e.g., are more than 70% equal), then
the new cycle may be a better choice. If at least one of the above criteria is true,
then the newly found cycle becomes the candidate. Finally, the candidate is removed
and the process is repeated until there are no cycles in the graph. The choice 0.7
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Fig. 32.1 A small complex network with probabilistic links

of the relative importance might seem arbitrary, but it does not have a significant
algorithmic impact, as long as is larger than 0.4.

Figure 32.1 illustrates a small graph with probabilities on edges. The weighted
degree of node 4 indicates that this node is the most influential one, however as
illustrated, through 4 only three nodes are potentially accessible. From our point of
view, node 1 becomes the better choice. Its RPCC value is equal to 2.02493, whereas
node 1’s RPCC value equals to 1.77751.

32.3.2 RPCC Without Cycle Extraction (RPCCC)

In our second approach to calculate the importance of a node, we use only the sum
of the significances of the stems within a specified range, leaving the cycles of the
graph intact. The calculation of RPCC for each node is as previously, but nowwithout
Steps 2 and 3.

With this approach, we test the quality of paths through which a node i sees the
rest of the network within the specified range. Since a path may be accessed by
more than one nodes (e.g., i → j → k → l → m and i → t → k → l → m),
this approach also takes into account with how many ways a certain portion of the
network can be controlled by i .

This approach targets the elimination of the burden of cycle calculation that can
become significant in large networks and when k becomes relatively large. In princi-
ple, it does not differentiate significantly the performance of the method with respect
to the previous method.
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32.4 Simulation Parameters and Experimentation

For evaluation purposes, we had to select appropriate competitor methods, use
networks with probabilistic edges, and also propagation models. As already men-
tioned, in the absence of competitors designed specifically for our problem, we
used the weighted degree [7]. It is a straightforward generalization of the traditional
unweighted degree as used in [5] for the evaluation of the spreading capabilities of a
node in complex networks. Also, despite thewealth of real datasets that concern com-
plex networks, it is hard to find appropriate input networks with probabilistic links.
Therefore, we had to resort to the solution of using real complex networks and anno-
tate their links with probabilities drawn from various distributions (uniform, zipfian,
exponential, gaussian). Specifically, in the present article, we present results from a
social network, namely Wiki-Vote which is part of the Stanford Network Analysis
Platform [13]. As far as the propagation model is concerned, there is a wealth of such
models in the literature, and it is worth examining the performance of the methods
for each one of them. In this article, we confined ourselves to the SIR model with
the characteristic that an infection originates from a single spreader, which is quite
popular and has been used in similar studies [5]. We use relatively small values of
infection probability to highlight the importance of influential spreaders.

The proposed centrality methods k-RPCC can be calculated for regions around
the node of interest, and the whole network, as well. We experimented for values of
k = 2, k = 3, and k = 5, where k is the distance in hops. Similar to [5, 14], we
used the average size of the network’s infected area as the performance measure.

For the experiment presented here due to lack of space, the probabilities of the
edges are assigned based on uniform distribution and k = 2 for the (RPCCC)
approach. The probabilities range from 0.1 to 1. As said, these values depict the
probability of an edge to be active on the graph. Links with values close to 1 are
mostly active in our inspection time, whereas values near 0.1 are mostly inactive.
According to these probabilities, we take 10 snapshots of the input graph resulting
in 10 temporal graphs. To obtain statistically unbiased results, we repeated the com-
putation 1000 times for each vertex in every temporal graph, i.e., 10,000 spreading
processes.

32.5 Evaluation and Overview of Research Contributions

Figure 32.2 illustrates the results of the comparison of RPCCC versus weighted
degree for k = 2. The y-axis corresponds to the portion of the temporal network
that got infected in percentage, and the x-axis depicts the values of the respective
centrality measure. An ideal performance curve would be a very ‘slim’ one; in this
curve, a very small number of infection percentages (values at y-axis) correspond
to the same centrality value (value at x-axis). This would mean that the centrality
measure would be able to divide the nodes on non-overlapping classes based on the
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Fig. 32.2 2-RPCCC versus weighted degree

network percentage that can infect. For our competitor, there is no such observation
since nodes with value of 100 are equal spreaders to those of 200, as depicted in (b).
For a fixed k-RPCC value, there is a small deviation in the spreading capabilities,
converging to a thinner curve, whereas for theweighted-degree, the deviation ismuch
wider. Overall, the performance curve of the proposed method is much closer to the
ideal one, than the competitor’s curve.

In general, we expect that the network topologies and link probability distributions
will affect the algorithms’ performance, but for any influential spreader detection
algorithm in order to be characterized as an efficient one, it is important that the
algorithm has a steep ascending curve, which is ‘thin,’ especially as we move to
larger values along the x-axis.

The study of complex, dynamic networks with probabilistic links arises natu-
rally in some application fields, such as vehicular ad hoc networks, and aggregated
descriptions of evolving complex networks. The identification of influential nodes in
such networks is a new and interesting topic of investigation. This article takes a first
step toward exploring this area and develops a measure of significance for the nodes
of such complex network that quantifies whether each node is the starting point of
‘strong’ (i.e., almost permanent) paths that subsequently can ‘control’ the rest of the
nodes. For the future, it is interesting to investigate the RPCC from a control theory
perspective, instead of a pure engineering aspect, as it was done in the present article.
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