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Abstract. The deployment of Content Distribution Networks (CDNs) to effec-
tively disseminate frequently changing Web content — Web views — to large
client populations introduces several interesting problems. One of the dominant
issues in this setting is the schedule according to which the disseminating server
will send the updated Web pages to the CDN’s proxy caches. Thus, determining
a server push schedule in order to minimize page staleness and server load is a vi-
tal issue in maximizing the scalability and usefulness of the CDN. In this paper,
we study the problem of scheduling Web view updates in Content Distribution
Networks. We devise an algorithm to constantly refresh the Web views, which
accounts for the update rate, the popularity and the position of each Web view
in the caches of the CDN. We present experimental evidence using synthetic
data, which show that our algorithm consistently and significantly outperforms
FIFO scheduling.

Index terms — Dynamic content, Edge caching, Scheduling, Content Distri-
bution Networks, Web.

1 Introduction

Content Delivery (or Distribution) Networks (CDN) provide users with fast and reli-
able delivery of Web content, streaming media, and transaction processing across the
Internet. Several companies e.g., Akamai, specialize in providing secure, outsourced
services and software. Content Delivery Networks provide solutions that optimize Web
site performance, deliver broadcast-caliber streaming media, and provide interactive
application services. For instance, Akamai Technologies maintains the largest CDN
with more than 12,000 edge servers in more than 1,000 networks worldwide [8].

As content delivery pathways between the server and the user continue to become
more congested, problems such as sites that load slowly, or crash during delivery are
increasing. A content delivery network solves these problems while reducing infrastruc-
ture costs. Some recent research done by Akamai, has shown that Web sites using a
CDN can increase click-throughs by 20%, reduce abandonment rates by 10-15%, and
increase order completion by 15%. CDNs resolve performance problems related to Web
server processing delays and Internet delays. Users requesting popular Web content
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may well have those requests served from a location much closer to them (a local Net-
work Provider’s data center), rather than from much farther away at the original Web
server. By serving content requests from a server much closer to the user, a quality CDN
can reduce the likelihood of overloaded Web servers and Internet delays. A CDN can
deliver rich, compelling content while increasing customer loyalty and strengthening a
company’s profile.

Until recently, content delivery networks were typically focused on delivering static
content, but recently they can also accelerate dynamic and personalized content. For
instance, Akamai’s EdgeSuite is a next-generation content delivery service, leveraging
its core technology and industry-leading content delivery network for the distribution
of an entire Web site including static, dynamic, embedded objects, and HTML.

A key parameter to these distributed technologies is the timely dissemination of
the updated material to the edge servers. The Web pages that change frequently in the
origin Web server and are outsourced in the edge servers — referred to as Web views
in [13] — must be maintained up-to-date in order to increase the user satisfaction by
reducing the content staleness. Thus, the server must deploy a schedule to push the
updates to the edge servers. This schedule should cope with view popularities and view
generation costs.

1.1 Overview of our approach

In this paper, we study the problem of best-effort cache coherence maintenance. We
focus on stale caching environments with a large number of caches — refered to as
edge servers in the CDN literature — whose content must be synchronized with the
data residing in an origin Web server. We do not care to keep the cached objects trans-
actionally consistent with the origin data (although this may happen), because of the
complexity and the cost of the required protocols [20]. Furthermore, even propagating
all updates in a nontransactional fashion may be infeasible, due to the huge data col-
lections that are updated and the network or computational resources required. Thus,
we focus on a best-effort coherence maintenance scheme. This scenario in depicted in
Figure 1.

We assume that each cache contains replicas of all the data objects of interest.
(Thus, we do not consider Web cache replacement policies [12].) In our setting, the
origin server is responsible for pushing each updated object to its caches and we do not
consider cache-initiated prefetching [15].

In stale caching, the value of an object at the cache and origin may differ. This
difference is called divergence and it can be measured using a number of possible metrics
including Boolean freshness (up-to-date or not), number of changes since refresh or
value deviation. The appropriate metric to use depends on the data and the application
objectives. We define our metric in section 3. In spite of the metric used, the objective
of the best-effort cache coherence maintenance is to minimize the (weighted) sum of
the divergence values for each outsourced object.

If enough resources are available, i.e., high network bandwidth, low update rates,
then it is possible to keep the objects transactionally consistent. Otherwise, we must
prioritize some refreshes based either on the divergence value and/or a weighting scheme
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Fig. 1. Conceptual diagram of the problem.

that reflects the relative importance of the updated objects. We describe our prioritiza-
tion/scheduling scheme in section 4. In section 5, we show experimental evidence that
our proposed scheme achieves superior performance in terms of minimizing staleness
over a baseline scheme that implements a FIFO scheduling.

2 Related work

A large body of research is related to the problem of maintaining the coherence of
outsourced Web objects or as it is frequently called the cache synchronization problem.
We outline the most important and most relevant work here.

Many stale caching and replication approaches have been proposed [20,9]. How-
ever, all these approaches do not consider environments in which there is not enough
bandwidth to propagate all updates.

In the approaches presented in [5] and [10] the cache plays the central role. It tries
to predict which objects have changed and by how much. If the objects do not change
in regular predictable intervals then the refresh schedule delivers poor quality to the
users. Contrary to these approaches, we do no try to make predictions about object
update rates, but we are aware of the exact time the object updates.

A lot of work considered the problem of minimizing the bandwidth consumption
and query latency in the presence of constraints on the age or accuracy of cached
objects, see for instance [17,18,7,6,1]. Our work differs from theirs mainly in that we
do not consider any constraints upon the cached data.

Some other work [3, 2, 16] considered the issue of sending out invalidation messages
to caches but did not investigate refreshing the updated objects in the background as
we do.

Our work bears the largest similarity with the work reported in [4, 14,19, 22]. Chal-
lenger et al., in [4] deal with maintaining strong cache coherence, whereas we focus on
weak consistency. Labrinidis and Roussopoulos in [14] focus on a system composed of
a content cache and several sources (base relations). It is assumed that the sources and
the cache are connected over a local area network and thus they do not consider the



unpredictable nature of the Internet. Olston and Widom in [19] present an approach
where the cache cooperates with the sources in the formation of the schedule and thus
it is different from our approach which is based solely on a push-based fashion. The
model employed in [22] is alike ours, but the focus of their work is to determine the
optimal transmission of object updates under some fixed assumptions about object
update rates and transmission capabilities of the server.

Finally, our work is loosely related to the work done on scheduling events in real-
time systems [21]. Though, these approaches assume strict completion deadlines and
their objective is to minimize the percentage of events that miss their deadline.

3 Object staleness

Let us consider an object O residing in the origin site, which undergoes updates over
time. Let C'(O) represent a cached copy of O. Let also V(O,t;) be the value of O at
time t; and V(C(O),t1) be the value of C(O) at time ¢;. In general, the divergence
between O and C(O) at time ¢; is given by a numerical function D(O, t;). Immediately
after a refresh, the value of this function becomes zero (assuming zero propagation
time), but its value may become greater than zero between refreshes. Depending on
the application, we can use different divergence functions. In this work, following the
approaches in [5,14], we adopt a Boolean model for the divergence function. That is,
D(O,t1) = 0iff V(0,t1) = V(C(0),t1) and D(O,t1) = 1iff V(O,t1) # V(C(0),t1)
at time t;. We call freshness the reverse of the divergence, that is, freshness = 1 —
divergence or F(O,t1) = 1—-D(O, ;). Figure 2 illustrates the evolution of the freshness
of an object.
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Fig. 2. An example of the evolution of the freshness of an object.

Thus, the freshness of an object O over a period T = [t;, ;] is defined as:

1 b
F(07 T) =

F(O, t)dt (1)

Jg— biJit

and the freshness F(D,T) of a database consisting of N objects is defined as:

1 N
F(D,T)= 5> F(0:,T) ()



Using Equation 2, we must prioritize some object refreshes. This equation implies
equal importance for all database objects. It is common though, that the more popular
objects — the objects with higher access rates — contribute more to what is perceived
as database freshness. This is due to the skewed access patterns for Web objects. Thus,
we modify Equation 2 to take into account the access frequency fo of an object and
thus we have the following definition of the weighted database freshness:

N
F(D,T) = %Zfoi * F(0;,T) (3)

The objective of our best-effort cache coherence maintenance scheme is to schedule
object updates so as to minimize the database freshness as this is defined by Equation 3.
Since the object update time is not apriori known, we deal with an on-line problem.
We seek for an efficient heuristic, which may probably exploit some information about
the popularity of the object, or some characteristics of the update stream.

4 Scheduling Web view updates

When there are sufficient network and processing resources, we can schedule an object
refresh as soon as that object has undergone an update. This implements a simple FIFO
scheduling policy. In our case though, the resources are limited and thus the server
maintains a queue containing all the refreshes that must be executed. Nevertheless, we
can still resort to the FIFO policy, but there is an open question of whether we can do
better.

Let us visualize our scheduling problem using 2-dimensional Gantt charts, which
were introduced in [11]. Suppose that we have three pending refreshes in the server’s
queue. We will refer to these as Refreshl, Refresh2 and Refresh3 with total processing
cost (measured in some cost unit) Costl (=4 units), Cost2 (=3 units) and Cost3 (=1
units), respectively. Let also the popularity of the respective objects (measured in
some popularity unit) be Popl (=5 units), Pop2 (=4 units) and Pop3 (=2 units).
Suppose that the three refreshes occurred with the order mentioned, i.e., first Refreshl
then Refresh2 and finally Refresh3. Then, FIFO would produce the following schedule
Srrro = (Refreshl, Refresh2, Refresh3). The left part of Figure 3 illustrates the cost
incurred by FIFO, which is the total area under the heavy solid line. This area is equal
to 64. It is straightforward to deduce that this cost directly represents our divergence
metric. Thus, to increase the freshness we must decrease the total area of the schedule.

As shown in [11], the minimum value for that area for nonpreemptive schedules is

obtained if we schedule the refreshes in nonincreasing value of the slope p; = L.

Thus, we have p; = 2 = 1.25, pp = 3 = 1.33 and p3 = 2 = 2. Under this rule,
the largest slope rule as we will call it, we obtain the following schedule Spsp =
(Refresh3, Refresh2, Refresh1). The cost (area) of this schedule is equal to 58, lead-
ing to an improvement of 10% even for this small example.

Using the scheduling rule defined by the slope of each refresh, we initiate the trans-
mission of object updates. This rule is no longer optimal if there are “dependencies”

between the objects. A dependency between two objects o; and oy exists when os is
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Fig. 3. Divergence for FIFO (left) and LSR (right).

derived by o0; and thus it makes no sense to refresh o, before refreshing o;. Neverthe-
less, we use the largest slope rule to schedule refreshes, but paying attention to avoid
unnecessary refreshes that may occur due to object derivation hierarchies.

5 Performance evaluation

To investigate the performance of the proposed scheduling policy, we conducted a series
of tests comparing it with the FIFO policy. We describe the simulated system model
in section 5.1 and a subset of the results obtained in section 5.2.

5.1 System model

We used the PASASOL library® for building and simulating a distributed system en-
vironment. PARASOL gives the ability to define hardware and software components
and simulates them.

Hardware architecture The hardware architecture consists of K CDN servers, x
routers/gateways and network links between the servers and the routers. One of the
CDN servers is located in the same site (or just same subnetwork) with the back-
end database and we call it the masterCDN. A graphical illustration of the hardware
components is presented in Figure 4.

The routers play the role for routing the messages between the CDN servers based
on the route tables built during the system initialization. We have chosen randomly real
IP addresses for each of the CDN servers scattered all over the world (US, Australia,
Europe etc) and we used the traceroute utility to find the real network connectivity.

All the PARASOL network links are set to have the same connection speed, thus the
time for transferring a file from node A to node B, is up to how many routers/gateways

! http://www.cs.purdue.edu/research/PaCS/parasol.html



are between node A and B. This is a plausible assumption and fits the reality quite
well.

Every CDN server consists of one CPU except for the masterCDN node, which
consists of tree CPUs. That’s because we want to estimate separately the computation
time used by the DBMS, which is a component independent from our scheduler. All
the CPUs are set to the same CPU speed.

Our simulator is open, and everything is configurable. The default configuration
variables we used for the hardware components are shown in Table 1.

|Parameter Default Interpretation |

links speed 2000 Kbps Data Links speed
cpus speed 200 MIPS CPUs speed

Table 1. Baseline system parameters related to hardware components.

@ Parasol Node
(e}

Fig. 4. Simulated System Hardware. Fig. 5. Simulated system model.

Software Architecture/System Tasks Every node of our system runs specific tasks
for which an overview is show in Figure 5.

Routers. On every router/gateway node, a router task is running. This task receives
packets (files/webviews) from the network. Every packet consists of the header and
the body (the file itself). The header contains the destination node. Upon receiving a
packet from node A to node B, the router task sends it to the next node of the shortest
path from A to B. This "next node” may be another router node, or the node B itself
if the specific router node is connected with a link with node B.

CDNservers. On every CDN server (except for the masterCDN) an ftp service is
running. This service just receives files (webviews) from the network and sends back
an ACK message to the masterCDN node.
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Fig. 6. masterCDN components.

MasterCDN. This is the most core node of the system and runs several tasks which
are shown in Figure 6.

— DBMS. The DBMS runs on CPU 1 of the masterCDN node. It is responsible
for receiving relation update requests from the Scheduler and executes them. The
DBMS task processes the relation update requests sequentially. After completing
a relation update it sends back to the Scheduler task an ACK message . This ACK
message has the meaning that the specific relation update has finished. This helps
us in two ways:

o The relation update requests are non-blocking, so our algorithm continues to
run while a relation update is performed.

e The Scheduler has full control or the progress and will schedule a Web view
update iff the relation update has been completed. So every Web view will be
valid on its generation time, and it is guaranteed that no invalid data are used
to compute the views.

— Scheduler. The scheduler task is running on CPU 2 of the masterCDN node. It
is the core element of the system and handles almost everything. It maintains 2
queues in parallel. One for the relation update requests and one with the webviews
that have to be updated. Upon receiving a relation update request, (a) it is added
in the relations queue, (b) all the webviews depended on this relation are added in
the webviews queue. Whenever the DBMS task is idle, the next relation update is
sent to it (using always the FIFO). Whenever the ViewUpdater is idle, a webview
is selected (based on the appropriate algorithm) and sent to the ViewUpdater.

— ViewUpdater. It is running on CPU 2 of the masterCDN node. Upon receiving
a webview update request from the scheduler

e it computes the view

e notify all the CDNupdaters

e sends back to the scheduler an ACK that the task has finished

— CDN;Updater. On CPU 2 of the masterCDN node are running ¥ — 1 CDNUp-
dater processes. Each CDNUpdater corresponds to one CDN server and is respon-
sible for transferring/sending the updated views to the corresponding CDN server.
Each CDNUpdater task maintains its own pool of webviews that have to be sent



to the appropriate CDN server. This way the transfer between masterCDN to
CDNserver(x) is independent on the transfers to any other CDNserver. The selec-
tion of the webview that is to be sent, is made by the selected algorithm (FIFO or
SMART).

— Dispatcher. Is running on CPU 0 of the masterCDN. It is responsible for produc-
ing relation updates. The update rate is configurable as shown in Table 2.

| Parameter Default Interpretation |
relation cost update 8000  Cost (in instructions) for a relation update
avg view update cost 1 View update cost (relative to relation cost)
Scheduler algo FIFO, LSR Algorithm for webview update selection
CDNupdater algo FIFO, LSR Algorithm for webview transmission selection
dispatcher rate 1.0 Dispatcher update rate

dispatcher rate relative to DBMS rate is relative to: DBMS,Updater,Net
Dispatcher rate deviation 0.0 Deviation for the dispatcher rate.

Table 2. Baseline system parameters related to software components.

Model Architecture We assume the existence of a backend database that contains
M relations, which hold the source data. A number N of Web views are defined for
our system. Some of these views are directly derived by the base relations, some others
are derived by relations and other views and other are derived only by other views.
Thus configuration subsumes the existence of an object derivation graph similar to that
described in [14]. Updates take place only on the relations and are propagated in the
views. Each edge server has a copy of every Web view. Thus, a copy of the i-th view
(1 <4 < N) located at the j-th edge server (1 < j < K) will be denoted as v; ;. Each
view v; ; is associated with a popularity factor f; ;, in the range [0,1). Table 3 shows
the value of the baseline parameters.

|Parameter Default Interpretation |

num relations 100 or 500 Number of base relations
num._views 2000 or 6000 Number of views
view_size_min 2000 bytes Minimum view size
view_size_max 5000 bytes Maximum view size
viewsize_avg 4000 bytes Average view size

Table 3. Baseline system parameters.

We created a view derivation graph similar to that described in [14] to simulate
the effect that some views may be generated by other views and not only from base



relations. This directed acyclic graph has 3 levels. The lowest level is represented by the
base relations, the next level is composed by 1000 views and the third level consisted
of 1000 (in case for sparse graphs) or of 5000 views (in case of dense graphs). The
dependencies of each view is measured by the average in-degree. The base relations
participation is the view generation is uniform. The in-degree for the level-2 views is 2
for sparse graphs (4 for dense graphs) and the in-degree for the level-3 views is 4 for
sparse graphs (6 for dense graphs).

The popularity of each view is determined by a uniform distribution. This setting
(uniform popularities and uniform refresh costs) favors FIFO, which has no considera-
tion about access rate or update cost. We decided though to examine the performance
of the policies under this setting so as to validate the superiority of our method even
in neutral (though unrealistic) environments.

5.2 Experiments

Our first experiment investigates the performance of LSR and FIFO for various up-
dates rates. The results are depicted in Figure 7. We can see that LSR significantly
outperforms FIFO. The gains are always more than 15%.
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Fig. 7. Freshness vs update rate — (Left) 0.0001, (Middle) 0.0005 and (Right) 0.001.

Our second experiment examined the capability of the algorithms to recover after
a surge of updates that force freshness to drop to very small values. The results are
depicted in Figure 8. Again, we can see that LSR recovers much faster that FIFO.
Figure 9 presents the same results, though it zooms into the interval which includes
the time required by the algorithms to recover.

Finally, in Figure 10 we present the scalability of our algorithm to recover for various
update rates. We observe that no matter how large the update rate is, LSR can recover
very fast. This is illustrated by the steep slope of the curve.

6 Conclusions

In this article, we proposed and experimentally verified a best-effort cache coherence
maintenance scheme for the edge servers of a Content Delivery Network. We defined a
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Fig. 8. Freshness — (Top) 100 relations, and (Down) 500 relations. (Left) Sparse dependency
graph, and (Right) Dense dependency graph.

coherence model based on a Boolean metric of the freshness of a cached object and then
we proposed a policy to disseminate object updates to the edge servers. Our scheduling
policy takes into consideration the access rate to the outsourced objects and the cost
of updating an object in order to prioritize the refreshes. Using synthetically gener-
ated data, we presented experimental evidence that the proposed policy is significantly
better than the FIFO scheduling method.

As future work, we plan to investigate the alternative of organizing the CDNs into
a (possibly deep) hierarchical structure, so as to parallelize the sending of the updated
content and compare its design issues and perforance with the present approach.
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