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ABSTRACT
Energy conservation and access efficiency are two fundamen-
tal though competing goals in broadcast wireless networks.
To tackle the energy penalty from sequential searching, the
interleaving of index with data items has been proposed.
The current broadcast indexes present significant shortcom-
ings. This article proposes a novel parameterized air index,
the interpolation index, which is a tunable structure able to
optimize the latency with the tuning time kept at a given
amount, and vice versa. Theoretical and experimental re-
sults attest that the novel indexing structure outperforms
the state-of-the-art air indexing scheme.

Ca teg o ri es a nd Subject Des cri pto rs
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless communication; C.2.4
[Computer-Communication Networks]: Distributed Sy-
stems—Distributed applications; E.1. [Data]: Data Struc-
tures—Distributed data structures

General Terms
Design, Experimentation, Measurement, Performance.

Keywords
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1. INTRODUCTION
The rapid advent of wireless technology along with the

growing popularity of smart mobile devices, led to the de-
ployment of pervasive information services, which provide
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access to “ambient” information to large number of au-
diences (clients), anywhere, and anytime, through access
points and a number of wireless channels. Additionally, the
advances in miniaturization and the creation of low-power
circuits, combined with small-sized batteries have made the
development of wireless sensor networks a working reality,
boosting the deployment of wireless networks even further
and pushing the challenges concerning their development to
the limits.

Consider the following scenario encountered in a cellular
wireless network (e.g., a PCS), where resource-constraint
mobile units within a wireless cell, retrieve information from
a relational database, whose contents are repetitively broad-
cast by a base station serving the cell; in the general case,
the information pieces consist of thousands of “projections”
(i.e., columns) of relational table rows. The existence of
wireless data broadcast service providers, such as Ambient1

and Microsoft2 , confirms the industrial interest in such kind
of services and exhibits their feasibility.

In such an application scenario, it is evident that:

• The information “consumers” need to retrieve the data
as quick as possible (i.e., with small access latency,
which is the time elapsed between when the need for a
datum arises in a node and the moment the node gets
that datum from the channel).

• The consumers are energy-starving nodes; therefore
they should refrain from continuously monitoring the
broadcast channel (i.e., pursuit a small tuning time,
which is the amount of time a node spends while mon-
itoring the channel).

• There could be several thousands of broadcast items,
thus scalability in terms of broadcast items is a very
important issue.

Access efficiency is a common target in many systems,
(e.g., databases), but energy conservation is a vital goal in
wireless networks for prolonging the longevity of the sensor
network or for guaranteeing as much power-independence
as possible for the mobile hosts. To achieve energy savings,
mobile nodes support two generic modes of operation, the
active mode, which is a fully operational state, and the doze

1Ambient Information Network and Device Design
(http://www.ambientdevices.com)
2DirectBand Network, Microsoft Smart
Personal Objects Technology, SPOT)
(http://www.microsoft.com/resources/spot)
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mode3, which is a power saving state. The ratio of energy
consumption between the two modes is usually an order of
magnitude [24]. Similarly, sensor nodes can be in one of
three active states – transmit, receive, idle – or in sleep state;
a sensor in the sleep state consumes 7–20 times less energy
than when it is in the idle state [4].

As it is easily seen, access latency and tuning time are
competing each other: to acquire the requested data as
soon as possible, the client must actively listen to the broad-
casting channel—retrieving mainly unwanted information —
therefore consuming energy, and vice versa. Apparently, ev-
ery solution for trading off access latency and tuning time
must provide some auxiliary information which allows clients
to alternate from doze mode to active mode when brows-
ing the broadcast data. Thus, clients can remain in the
doze mode most of the time and tune selectively into the
broadcast channel only when significant data arrive. This
set up calls out for a sort of directory or indexing informa-
tion which specifies the arrival times of particular items over
the broadcast channel. By accessing this index, known as
air index , mobile clients are able to predict the arrival of
desired data. Obviously, this scheme demands additional
bandwidth for broadcasting the index. However, its costless
scalability feature compensates for the incurred overhead
and, so, it became the method of choice.

Two main indexing approaches have been were introduced
in the literature: i) multiple replicated indexes are inter-
leaved with data broadcast [11]; and ii) transmitted data
are linked together through index information so that mul-
tiple entry points exist during each broadcast cycle [10].

In the following, we deal with the second approach since
proven superior to the first one. The most prominent mem-
ber of this category of air indexes is the exponential in-
dex [25]. This scheme can be loosely seen as the lineariza-
tion of a directed acyclic graph (dag), laid over the sorted
sequence of data items to be broadcasted, so that the client
can simulate the binary search operation, irrespectively of
the time point he tunes into. Alternatively, it can be seen
as a distributed implementation of skip lists, i.e., a skip list
with multiple entry points, which try to simulate the expo-
nential searching technique [15] over the periodical broad-
cast. As a result, the exponential index shows logarithmic
access complexity and resilient behavior to link errors due
to bad transmitted packets. Even though this access time
complexity is acceptable for a few hundreds of items, still is
not satisfactory when dealing with a few thousands of items.

In this paper, we are mainly motivated by the scalabil-
ity problem of the indexing structures, and improve upon
the state-of-the-art indexing method, namely the exponen-
tial index. Deviating from the philosophy of this index, we
recursively apply a squared-distance partitioning of the lin-
ear broadcast order, which, effectively, overlays index search
paths of log-logarithmic length in the average case. Addi-
tionally, we implement this technique in a distributed fash-
ion, so that it allows index access from any tuning point,
permitting the recovery from link errors quickly and easily.
This novel air indexing scheme is called the interpolation air
index. Theoretical and experimental results attest that the
novel indexing structure outperforms state-of-the-art air in-
dexing schemes and demonstrate its great flexibility in trad-
ing access latency with tuning time.

3Following the terminology of [11].

The rest of the paper is organized as follows. Section 2 re-
views basic notions and related work. Section 3 introduces
the interpolation air index. In Section 4 we provide both
theoretical and experimental evidence on the superiority of
our scheme over exponential index. Finally, Section 5 con-
cludes our work.

2. PRELIMINARIES

2.1 Basic notions
We consider a generic data broadcasting system, where

a server cyclically broadcasts a collection of totally ordered
data items onto a down-link wireless channel. The mobile
clients must tune into the broadcast channel and actively
must find their way to the required information. In order
to aid the search process, the server interleaves auxiliary in-
dex items with the actual data items, forming a broadcast
cycle, i.e., bcast . Every bcast is organized as a sequence
of equal sized buckets, which constitute the smaller unit of
information a mobile client has access to. Each bucket is
categorized as being either data bucket when it contains a
number of (pure) data items or index bucket , in case it holds
index information. Sometimes, an index bucket may accom-
modate and some data items, and, then, it is termed as
hybrid one. In this context, a pointer to a specific bucket is
defined as an offset from the bucket containing the pointer
to the bucket to which the pointer points to, and designates
the number of basic bucket transmission time units one has
to wait to start retrieving the pointed bucket. It is widely
accepted that every data bucket contains a pointer to the
immediately upcoming index bucket. As it is easily seen,
the employment of index buckets reduces the tuning time,
however it increases the access time.

2.2 Related work
Air-indexing has received much attention during the last

years after its introduction in the seminal papers [10, 11].
In [11] (1, m)-indexing was introduced as an index alloca-
tion method, according to which the index information is
broadcasted m times during each bcast. The main problem
with the (1, m)-indexing scheme is the replication of the en-
tirety of the index m times, since it prolongs the broadcast
cycle and thus the average access time. In the same paper,
a tree-based indexing method, called distributed indexing,
was also suggested: the data file is associated with a B+-
tree, and since the wireless channel is a sequential medium,
the formed tree is linearized with a pre-order traversal. Ad-
ditionally, the first k levels of the index are partially repli-
cated in the broadcast, while the remaining levels are not.
The nodes at the replicated levels are repeated at the begin-
ning of the first broadcast of each of their children. Com-
pared to the (1, m)-index, the tree-based scheme has lower
access time due to its shorter broadcast cycle while its tun-
ing time is analogous to that of the (1, m)-index.

In [10] it was exhibited how hash functions can be used for
allocating data items to the slots in the broadcast schedule.
Since collisions — that is, multiple items are mapped to the
same slot — are inevitable, the authors adopted the linear
probing method for collision resolution. Namely, overflow
items are relocated into succeeding slots, pushing forward
every item originally hashed to them, and, thus, penalize
them with an extra tuning time of one slot. The hash-based
scheme incurs minimal overhead, compared to the over in-
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dexing techniques, since only the hash function is broadcast
together with data. However, one has to examine the en-
tirety of the implicit partitions, corresponding to areas of
overflowed items, to find the desired item. This may incur
high tuning time, especially for large partitions. This ap-
proach was extended in [26] to the case of skewed bcasts, by
introducing the MHash air-index.

In [10], the flexible indexing scheme was also proposed,
according to which, the sorted sequence of data items is
partitioned into several equal-sized segments. At the be-
ginning of each segment, a global index and a local index
are accommodated. The global index at a segment contains
a logarithmic number of (key, pointer) pairs to guide the
search towards succeeding segments. On the other hand, the
local index holds m (key, pointer) pairs that split further the
hosting segment into m + 1 subsegments, and, thus, com-
prises an inside directory. This approach was generalized
in [25], by introducing the exponential index. Specifically,
the sizes of the indexed segments increase exponentially by
a base of r ≥ 1, r being a system parameter. This approach
was further studied in error-prone environments [25].

Seifert and Hung [21] suggested the flexible distributed in-
dexing scheme which employs partitioning of the broadcast
program into a number of equal-sized data segments, such
that a given limit on the tuning time will not be exceeded, in
conjunction with multiplexing of a dense B+tree-like index
on the data items. Similar to (1, m)-indexing, index infor-
mation is broadcast multiple times during a bcast. Both [22,
2], considered unbalanced tree structures to optimize broad-
cast schedule for non-uniform data access, while Tan and
Yu [23] studied scheduling policies for skewed bcasts.

Signatures have been successfully employed to facilitate
retrieval in several types of databases and was adapted to
broadcast environments in [13]. A hybrid among the signa-
ture method and the distributed index tree was proposed
in [7] and applied it also to the multi-attribute indexing
case [8, 9]. Remotely related to the present article, are the
air indexing schemes that have been proposed for the case
of multiple broadcasting channels [1, 6, 12, 19].

For the case of wireless sensor networks, since the major-
ity of research has focused for the moment on topics like
routing, clustering, sleep scheduling, localization, medium
access control, the issue of indexing has received much less
attention and the literature has solely developed distributed
indexes that reside on the sensor nodes and are not broad-
cast. These indexes comprise (in one form or another) adap-
tations of the traditional disk-based indexes, with special
care to achieve only local (to the extend possible) commu-
nication during their creation or maintenance, and small
storage overhead. The GHT [20] is based on a (geographic)
hashing scheme, DIM [14], DIFS [5] and DIST [16] are based
on the quadtree structure, and TSAR [3] is based on Skip
Graphs (a generalization of Skip Lists for distributed envi-
ronments). None of these indexes is broadcast over wireless
channels and they all assume global ordering for the data
they index.

3. INTERPOLATION AIR INDEXING
The method proposed in the present article exploits the

idea of recursively applying a squared-distance partitioning
of the linear broadcast order, which, effectively, overlays in-
dex search paths of log-logarithmic length, in the average
case. This idea is further improved by implementing it in

a distributed fashion to allow for multiple “entry” points
from the broadcast. Firstly, we exemplify the idea behind
this log-logarithmic scheme by applying it in a ordinary ar-
ray of items (the word ‘ordinary’ means that the items are
not broadcast, but reside in a computer’s main memory).

3.1 The idea behind the log-log scheme
Suppose that there is an array of totally ordered numeric

values (keys) x1 < x2 < · · · < xn, drawn independently from
a uniform distribution over the range (x0, xn+1). Search-
ing by interpolation for the item y in the array proceeds
as follows: Let p = y−x0

xn+1−x0
, that is the percentage of the

keys expected to be less than y. Then, we compare y to
x�p∗n�, and, in case of inequality, we search recursively ei-
ther subarray x1, x2, . . . , x�p∗n�−1 (y < x�p∗n�) or subarray
x�p∗n�+1, x�p∗n�+2, . . . , xn (y > x�p∗n�).

The access time is log log n in the average case, and linear
in the worst case [17]. This approach, with the same time
bounds, can be employed in every totally ordered data set
whose cumulative distribution function is known.

A further improvement to this scheme can be achieved [18],
namely the binary interpolation search, which modifies the
actions after comparing y to x�p∗n�, as follows: If y > x�p∗n�,
then y is successively compared with x�p∗n+i

√
n�, i = 1, 2, . . .,

to locate the smallest i such that y < x�p∗n+i
√

n�. If y <
x�p∗n�, then y is successively compared with x�p∗n−i

√
n�, i =

1, 2, . . . In either case, the located pertinent subarray of size√
n is recursively searched.
It can be shown that the average access time is bounded

by 2.03 log log n, but its worst case time complexity is
√

n+
O( 4

√
n). It can be relatively easily showed that the worst

case complexity of this approach can be further improved
to 2 log n, if one employs exponential search to determine
i with log i comparisons [15], without affecting the average
case performance.

3.2 Description of the proposed Interpolation
index

The bcast in our proposal consists of n hybrid buckets,
b1, b2, . . . , bn. The embedded index entries will guide the
search, simulating the interpolation search in the wireless
set up. In the following, i) Mi, mi will denote the maximum
and the minimum data entry, respectively, of i-th bucket —
therefore, every data element belongs to the range [m1, Mn];
iii) m1 and Mn will be also available to every bucket; and
iv) FR(y) = Prob[Y ≤ y|Y ∈ R].

In the first version, apart from m1 and mn, the index
part of k-th bucket, k = 1, 2, . . . , n, will consist of pairs
(pntr,maxKey), where pntr is an offset and maxkey is the
maximum data entry of the bucket pntr slots ahead. The
0-th entry refers to the immediately upcoming bucket, while
the i-th entry holds m

k+n2−i , namely, the maximum data

entry n
1
2i slots ahead; every such entry is characterized as

i-th level. It follows immediately that:

Lemma 1. The space overhead of every accommodated in-
dex structure is 1 + log log n entries.

Please note that the offsets are immediately inferred given
the sequence id of the hosting bucket and, therefore, are not
stored.

Based on stored information, the access protocol is as fol-
lows (please cf. Fig. 1): Let k be the bucket the client cur-
rently tuned into, y the search item, l the level of recursion,
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and j the probing position, calculated using F . When y be-
longs to the key range of either k or k + 1, or equals to one
of the maximum values Mi of the indexed buckets, then we
do not have much to do. So, in the sequel we assume that
none of these cases occurred.

During the first time the client tunes into (i.e., l = 1),
three possibilities, besides the general case (see below) may
happen. When both j and y lie ahead of k (Fig. 1(a)), the
rest of the bcast is useless. Thus, we check whether j√

n
≤ cd,

cd a tuning distance parameter. If so, the client dozes until
bucket 1 arrives, and then he conducts linear search with√

n long jumps, using level 1 pointers, until he locates the
left delimiting bucket of the

√
n-sized subfile containing y,

to which we recur; since, on the average, y lies within ap-
proximately ±2

√
n slots from j ([18]), and bucket 1 is close

enough to j, we adopt this conservative policy, to avoid a
possible second missed bcast. Otherwise, the client switches
to doze mode until bucket j − ca

√
n arrives, ca being an

interpolation adjustment parameter. Again, we prefer to
“step” back a little from j, trading-off an increase of tun-
ing time with sparing some latency time, by decreasing the
probability of a second consecutive unutilized bcast. In case
of successful prediction, we start employing the above men-
tioned linear search to narrow down the area of interest in a
sub-transmission of

√
n extent. If, however, a second missed

bcast does happen, we employ the linear search starting from
bucket 1.

(a) kj

y

(b) kj

y

(c) k j

y

(d) j

y

k
l

1/2nk +

(e)
j

y

k jl
1/2nk +

(f) j

y

k
l

1/2nk +

Figure 1: Relative positions of k, j and l: (a)-(c) can
happen only when l = 1, (d)-(f) general recursive
cases (l ≥ 1).

In the second case, j precedes k and y succeeds both of
them (Fig. 1(b)); we simply start switching between doze
and active mode, with

√
n intervening slots, until we locate

the desired
√

n-sized interval, to which we recur. When y
precedes k and j succeeds k (Fig. 1(c)), the client missed

the current bcast. This situation is similar to the one of
Figure 1(a), with k substituting j. Specifically, if k√

n
≤ cd,

the client dozes until the arrival of bucket 1 to conduct the
linear search. Else, the client goes back to active mode when
bucket k− ca

√
n arrives. If he is fortunate in his prediction,

linear searching commences; otherwise, the bcast is useless,
he dozes and applies the linear search starting from bucket 1.

Turning now to the general case (l ≥ 1), the client al-
ready knows that y is lying between buckets k and min{k +
2l−1√

n, n}, the interpolation obviously returns an index j ∈
[k, min{k + 2l−1√

n, n}], and the length of jumping during

linear searching equals to 2l√
n. There are also tree possibili-

ties. In the first one, y seems to belong after the position the
level l pointer points to, i.e., bucket k+ 2l√

n, while j lies be-

tween k and k+ 2l√
n (Fig. 1(d)). Then, we doze until bucket

k + 2l√
n is transmitted and we start the linear search proce-

dure. When y is located between k and k+ 2l√
n, (Fig. 1(e)),

irrespectively of j’s position, we have nothing to do; the 2l√
n

subfile, to which we must recur, has been found. In the last
case (Fig. 1(f)), both y and j lie after bucket k + 2l√

n. If

j − ca
2l√

n < k + 2l√
n holds, we linearly search the rest of

the bcast from slot k + 2l√
n. Else, we doze until bucket

j − ca
√

n arrives. If the adjusted prediction is proven to
be true, we execute the linear search; otherwise, we missed
the bcast and linear searching is performed from “secure”
bucket k + 2l√

n.

9292848483838080797971717070686860605656525240403434232321211010

681

702

794

10,92

681

702

794

10,92

1

342

524

10,92

1 23

2

4

10,92

1

522

604

10,92

1 40

2

4

10,92

Figure 2: An instance of searching for item 40 with
interpolation index.

The described protocol is presented in the appendix, while
Figure 2 illustrates a searching instance, where we assume
that cd = 1.2, ca = cx = 1, and 40 is the key we search. We
initially tune into bucket 8. Since 40 < 60, we interpolate

and get j =
⌈

40−10
92−10

· 16
⌉

= 6. Since 6√
16

= 1.5 > 1.2,

we decide to switch into doze mode until the bucket 6 − 1 ·√
16 = 2 arrives, where we have 21 < 40, and, thus, we must

continue linear searching in upcoming buckets. Since level 1
pointer (52) bounds 40, we recur in level 2. We apply once

again interpolation which give us j = 2 +
⌈

40−21
52−21

· 4
⌉

= 5.

Because 40 is located after 2 + 4
√

16 = 4, we sleep until
bucket 4 is transmitted, where we figure out that 40 belongs
to the following bucket 5.

As far as tuning time is concerned, the following Lemma
holds, whose proof is omitted due to space limitations:

Lemma 2. The average tuning time is O(log log n).

4. PERFORMANCE EVALUATION
This section provides a detailed study of the performance

of the proposed index against the state-of-the-art scheme
of exponential index [25], using similar system parameters
in order to conduct fair comparisons. The database size
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n ranges from 1000 to 1000000 items. Additionally, the
database is characterized as small one when N between 1000
and 50000; otherwise, is considered as a big one. In this ar-
ticle, similar to [25] we present the results for uniform access
pattern; the conducted experiments for skewed (Zipfian) ac-
cess patterns favor the interpolation index even more. We
have also investigated different combinations of bucket ca-
pacity B, ranging thus the item size. In the sequel, we report
the results for B = 10 and B = 100; intermediate values for
B led to the same conclusions. Finally, the tuning time and
access latency, are both measured in terms of number of
buckets.

4.1 Tuning the Interpolation index
Our first experiment investigated the impact of parame-

ters cd and ca on the performance of the interpolation index.
Due to space limitations, we consider only the case ca =
cd = C. Figure 3 depicts our findings when N = 30 000, B
is either 10 or 100, and C varies between 0 (i.e., the index
‘blindly’ trusts the interpolation estimation) and 1.5 (we are
a bit conservative and adjust the estimation by going back
1.5 steps; we have arrived to analogous conclusions for var-
ious values of N , while being more conservative, that is,
C > 1.5 proven to deteriorate the index performance.

Figure 3(a) shows that every value greater or equal to
0.3 is fine for bringing the average latency time to 50% of
the bcast. On the other hand, C = 0.9 appears to be the
best value for achieving the overall best tuning time perfor-
mance. This value is used for the rest of the experimental
section, and as we will see, certainly beats the exponential
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Figure 3: Investigation of the C parameter when
N = 30 000: (a) access latency; and (b) tuning time
w.r.t. the C parameter.

index, proving that our proposal is a very easily configurable
indexing scheme.

4.2 Comparison with the Exponential index
In this section, we compare our proposal to the exponen-

tial index. The investigation is twofold: we explore both the
time as well as the space overhead of the two proposals.

4.2.1 Access latency and tuning time
Firstly, we explored the tuning time performance of both

schemes. The comparison was performed on the basis of
tuning the Interpolation air index to achieve the same ac-
cess time with that achieved by the exponential index and
then comparing their tuning time performance. The inde-
pendent parameter was the number of broadcast items. The
performance of the indexes was compared for both small and
large databases, and for the case where the parameter r of
exponential index was set to r = 2 and r = 3. The ob-
tained results are depicted in Figures 4(a)-(d). Confirming
the conclusions of [25], we observe that the tuning time of ex-
ponential index increases as the number of broadcast items
gets larger. The increase is more steep for large number of
items. On the contrary, the tuning time incurred by the In-
terpolation index is almost constant for small database sizes
and increases moderately for large databases, as a result of
its log log performance.
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Figure 5: Average access latency: (a) big data base
with r = 2; (b) small data base with r = 2.

In Figures 5(a)-(b) we performed the reverse experiment:
we kept the tuning time the same for both schemes and
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Figure 4: Average Tuning Time: (a) big data base with r = 2; (b) big data base with r = 3; (c) small data
base with r = 2; and (d) small data base with r = 3.

examined the access latency. We can see that our scheme
achieves the same average access latency performance, irre-
spectively of the data base size, while the exponential index
is slightly worst for small data sets.

4.2.2 Index overhead investigation
This experiment shows the results of the interrelation among

the tuning time and the index overhead which is measured
in “pointers” per transmitted bucket. Following the same
policy as before, we performed the investigation by keeping
constant for both indexes the first “quantity” and measuring
the other, and vice versa. Firstly, we evaluated the average
index overhead for the same tuning time; to achieve the same
tuning time, we adjusted the index base r of the exponential
index. The results are illustrated in Figure 6. It is obvious
that on the average, the overhead of exponential index is four
times larger than the respective of the interpolation index!
This implies that the length of the broadcasting program
generated by the exponential index is much larger than the
program generated by the interpolation index.

Then, we forced both schemes to employ the same in-
dex space overhead and investigated the tuning time per-
formance. Figure 7 confirms that interpolation air index
undoubtedly outperforms the exponential index by almost
an order of magnitude.

5. DISCUSSION AND CONCLUSION
Modern wireless broadcasting systems, like Microsoft’s

SPOT technology or emerging applications of wireless sen-
sor networks, involve the broadcasting of several thousands
of items over wireless channels. Given the fact that mobile
nodes of cellular systems or sensor nodes are energy-starving
devices, it is mandatory that the access to the transmitted
information is as energy-conserving as possible. This re-
quirement calls for the deployment of distributed air indexes
able to scale up to larger than ever numbers of items, and
tunable so as to be able to tradeoff energy-conservation for
access latency when needed.

This article is motivated by the aforementioned require-
ment, and proposes the interpolation air index, a very easily
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Figure 6: Average index overhead when both
schemes exhibit the same tuning time performance:
(a) big data base; and (b) small data base.
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Figure 7: Average tuning time when both schemes
exhibit the same index space overhead (big data
base).

configurable and efficient air indexing scheme. This scheme
exhibits a linear structure, suiting the broadcast environ-
ment very well. The index space overhead is log-logarithmic
per transmitted bucket, while the tuning time is log-logari-
thmically proportional to the broadcast size. Additionally,

the access latency and tuning time of the interpolation index
can be simply adjusted by a single parameter. To evaluate
the suitability and behavior of the proposed novel air index,
we investigated its performance against the state-of-the-art
exponential index [25]. The experimental results attest that
our index outperforms the exponential index both in tuning
time and space overhead, while achieving the same access
latency.

There are a number of issues that are left for future work.
Firstly, we plan to investigate how skewed data can be ac-
commodated in our scheme. Secondly, it is very interesting
to explore its performance in multi-channel data broadcast
environments.
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APPENDIX

AUXILIARY FUNCTION — SearchI

1. SearchI(y, x, z, l)

2. //probing of interpolated value x;z is the ‘retry’ bucket

3. if (x != current bucket)

4. doze until bucket x arrives;

5. if (y < mx)

6. switch to doze mode until bucket z arrives;

7. if ((mz ≤ y ≤ Mz) || (Mz ≤ y ≤ Mz+1))

8. //y belongs to z or z + 1

9. search y among the data elements of bucket z

10. or z + 1 and exit;

11. if ((y == Mp)&& (p among indexed buckets))

12. switch to doze mode until bucket p arrives;

13. return the result of search and exit;

14. SearchL(y, z, l);

15. else

16. if ((mx ≤ y ≤ Mx) || (Mx ≤ y ≤ Mx+1))

17. //y belongs to x or x + 1

18. search y among the data elements of bucket x

19. or x + 1 and exit;

20. if ((y == Mp)&& (p among indexed buckets))

21. switch to doze mode until bucket p arrives;

22. return the result of search and exit;

23. SearchL(y, x, l);

24. end of SearchI

AUXILIARY FUNCTION — SearchL

1. SearchL(y, x, l) // linear search with n
1
2l jumps

2. b = x + n
1
2l ;

3. while (Mb < y)

4. //known from the index of the current bucket b − n
1
2l

5. switch to doze mode until bucket b arrives;

6. b = b + n
1
2l ;

7. InterpolationSearch(y, b − n
1
2l , l + 1);

8. end of SearchL

CLIENT ACCESS PROTOCOL FOR INTERPOLATION INDEX

Algorithm InterpolationSearch(y, k, l)

Input: The key item y to be searched, k the current bucket

the client tuned into, and l the level of recursion

Output: The data bucket r such that y ∈ [mr , Mr ], and may

contain y

1. if ((mk ≤ y ≤ Mk) || (Mk ≤ y ≤ Mk+1)) //y ∈ {k, k + 1}
2. search y among the data elements of bucket k or k + 1;

3. exit;

4. if ((y == Mp)&& (p among indexed buckets))

5. switch to doze mode until bucket p arrives;

6. return the result of search and exit;

7. j =
(
l > 1 ?

⌈
n

1
2l−1 F[mk,M

k+n2−l+1 ](y)
⌉

:
⌈
nF[m1,Mn](y)

⌉)
;

8. if (j <= k)

9. if (y < mk) //this may happen only if l = 1

10. if (
⌈ j

2l√
n

⌉ ≤ cd)

11. //within heuristic distance parameter cd

12. SearchI(y, 1, 1, l);//we search from bucket 1

13. else //we will try the estimation, in case of failure

14. //we will resume on bucket 1

15. SearchI(y, j − ca
2l√

n, 1, l);

16. else //y > Mk, linear search from k

17. SearchI(y, k, k, l);

18. else //j > k

19. if (y < mk)

20. if (
⌈

k
2l√

n

⌉ ≤ cd)

21. //within heuristic distance parameter cd

22. SearchI(y, 1, 1, l);

23. else //we will try the estimation

24. SearchI(y, max{k − ca
2l√

n, 1}, 1, l);

25. else // y > Mk

26. if (Mk < y < M
k+ 2l√

n
) //the right subfile is found

27. //recursive searching

28. InterpolationSearch(y, k, l + 1);

29. else // y > M
k+ 2l√

n

30. if (j ≤ k + 2l√
n) //linear search from k + 2l√

n

31. SearchL(y, k + 2l√
n, l);

32. else //(j > k + 2l√
n) ∧ (y > M

k+ 2l√
n
)

33. if (j − cd
2l√

n > k + 2l√
n)

34. //we will try the estimation

35. SearchI(y, j − cd
2l√

n, k + 2l√
n, l);

36. else //linear search from k + 2l√
n

37. SearchL(y, k + 2l√
n, l);

end of InterpolationSearch
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